Hydrographic Data Acquisition In Support Of MLPA And MLMA Implementation

Prepared by
Rikk Kvitek, Pat Iampietro, Carrie Bretz, Kate Thomas,
Saori Zurita, Bryan Jones, Erica Morris

Seafloor Mapping Lab
California State University, Monterey Bay
100 Campus Center
Seaside, CA 93955

http://seafloor.csumb.edu
Final Report

DFG Contract No. P0170015
to the
Foundation of California State University Monterey Bay
Project No. A025006901

June 10, 2004

Hydrographic Data Acquisition In Support Of MLPA And MLMA Implementation

Prepared by
Rikk Kvitek, Pat Iampietro, Carrie Bretz, Kate Thomas,
Saori Zurita, Bryan Jones, Erica Morris

Seafloor Mapping Lab
California State University, Monterey Bay
100 Campus Center
Seaside, CA 93955

http://seafloor.csumb.edu
PROJECT SUMMARY

The goal of this three-year contract has been to produce high-resolution marine habitat maps of nearshore sites deemed critical to the implementation of the Marine Life Protection Act (MLPA) and Marine Life Management Act (MLMA) by the California Department of Fish and Game (DFG) Marine Region management team. As part of this contract, the CSUMB Seafloor Mapping Lab (SFML) ran 2755 km of hydrographic survey lines, mapping a total of 243 km² of habitat in southern and central California. The maps include three of the MPAs and their associated controls within the new Channel Island Marine Reserve Network, as well as nearshore data gaps from the Monterey Peninsula to Point Sur.

Note: The boundaries shown in this report for the Channel Island MPAs and their respective controls are for the priority MPA mapping areas as specified by DFG, and extend to the 3-mile state waters limit. The true offshore boundaries of the Channel Island Marine Reserves in most cases do not extend to the 3-mile limit. All habitat analyses and calculations for the Channel Island MPA’s presented in this report refer to and are based on the MPA and control survey areas prescribed by DFG, and extend out to the 3 mile limit or maximum depth range of the instrumentation.

Table 1. Total survey track lines run and habitat area mapped in central and southern California.

<table>
<thead>
<tr>
<th>Areas Surveyed</th>
<th>Depth Range (m)</th>
<th>Survey Track</th>
<th>Area Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Location</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Channel Islands</td>
<td>Gull Island</td>
<td>4</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Carrington Pt.</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>South Point</td>
<td>7</td>
<td>252</td>
</tr>
<tr>
<td>Central Coast</td>
<td>Monterey Peninsula</td>
<td>6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Yankee Pt.</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Soberanes Pt.</td>
<td>7</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Kasler’s Pt</td>
<td>8</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Hurricane Pt.</td>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2755</td>
</tr>
</tbody>
</table>

Because DFG redirected the focus of this contract to the Channel Islands in late 2002, greatly increasing the original geographic scope of work, the products from the mapping surveys are limited to those derived from multibeam bathymetry and sidescan sonar (where appropriate). The products from the entire mapping effort are being provided as GIS layer content to DFG as part of this report in DVD format. Because the contract was terminated a month early by DFG, final cleaning of the central California bathymetry grid data from Yankee Point to Point Sur is being completed with support from the Monterey Bay National Marine Sanctuary SIMoN Project, and will be provided to DFG by August 2004. Products delivered with this report include:

Channel Islands MPA’s

- Multibeam bathymetry
 - Shaded relief geotiffs – gray scale
 - Shaded relief geotiffs – colored by depth contours
 - Bathymetry DEM grids
 - Slope analysis grids
• Rugosity analysis grids
• Habitat classification (rock versus sediment) grids
• Bathymetric contour line shapefiles
• Statistical comparison of habitat distributions in the 3 MPA’s versus their control sites
• Sidescan sonar mosaics (where depth ranges are appropriate)
• Xyz bathymetry ascii files
• Xyz bathymetry shapefiles
• Base map data (MPA boundaries, coastlines, nautical charts)
• Full FGDC metadata

Central Coast (All of Monterey Peninsula to Pt Sur)
Multibeam bathymetry
• Shaded relief geotiffs – gray scale
• Shaded relief geotiffs – colored by depth contours
• Full FGDC metadata

Report and data on the identification of seafloor squid egg distribution in the sidescan sonar records.
Report on GIS habitat analysis of the Del Monte shale beds relating rockfish distribution to habitat models derived from multibeam bathymetry. (GIS data available upon request.)

SIGNIFICANT FINDINGS

HABITAT IN CHANNEL ISLANDS MARINE RESERVES COMPARED TO THEIR CONTROLS
Two of the Channel Island MPA sites, Carrington Point and South Point on Santa Rosa Island, had no significant difference between the distributions of habitat types (rock versus sediment) within the MPAs versus their paired control sites. Gull Island, the Santa Cruz Island MPA, however, did contain significantly more rocky habitat than its paired control site, both in total and when stratified by depth according to the habitat preferences of keys species of concern.

PREDICTING ROCKFISH DISTRIBUTION FROM MULTIBEAM BATHYMETRY DATA
The central coast habitat data was applied to two fisheries related issues during the course of the project. At the Del Monte shale beds, multibeam-derived products (rugosity, slope, topographic position index and depth) were used to create GIS spatial data models that successfully predicted the distribution of 8 species of rockfish (example shown in Fig. 20). The results from this work are presented as a separate report in the appendix. The numerous GIS analysis files are available upon request from SFML.

SIDESCAN SONAR MAPPING ACCURATELY IDENTIFIES SQUID EGG MASSES ON SEAFLOOR
During the spring 2004 habitat mapping surveys, SFML staff and colleagues from the Woods Hole Marine Biological Laboratory used sidescan and multibeam sonar to identify and map the distribution and abundance of squid egg masses and associated habitat geomorphology. Squid egg clusters < 1m in diameter as well as dense aggregations can be easily discerned in the sidescan imagery and were verified using georeferenced ROV video surveys. These results demonstrate that acoustic remote sensing can be used to identify essential spawning habitat critical for squid recruitment, as well as monitoring seasonal reproductive output as a means of regulating the squid fishery.
TABLE OF CONTENTS

PROJECT SUMMARY

Significant findings
- Habitat in Channel Islands Marine Reserves compared to their controls
- Predicting rockfish distribution from multibeam bathymetry data
- Sidescan sonar mapping accurately identifies squid egg masses on seafloor

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

PURPOSE

PROJECT DESCRIPTIONS

Multibeam Sonar Data Collection

Central California Habitat Mapping

Essential Fisheries Habitat Delineation using multibeam and sidescan data

Predicting rockfish distribution from multibeam bathymetry data

Sidescan sonar mapping identifies squid egg masses on Monterey Bay seafloor

Southern California Habitat Mapping – Channel Islands Marine Reserve Network

Background

The Channel Islands MPA Network

Species of concern

Project Objective and Goals

Data acquisition

Data Analysis for Rocky Habitat

Results

Gull Island MPA and control

Carrington Point MPA and control

South Point MPA and control

Conclusions

Literature cited

GIS DATA INDEX

Dataset Overview

Geographic Extent

Projection & Coordinate System

General Description of Data Layers

GIS Data & Project Organization

Metadata

Data Accuracy

APPENDIX - PREDICTING ROCKFISH DISTRIBUTIONS USING GIS AND MULTIBEAM BATHYMETRY DATA
LIST OF TABLES
Table 1. Total survey track lines run and habitat area mapped in central and southern California. ... 2
Table 2. Selected species-of-interest from Marine Protected Areas in National Oceanic and Atmospheric Administration’s Channel Island National Marine Sanctuary (Ugoretz 2002) .. 35
Table 3. Amount of rocky habitat found within each of the MPAs and paired control sites.. 55
Table 4. Gull Island habitat distribution by species of concern .. 56
Table 5. Carrington Point, Santa Rosa Island habitat distribution by species of concern. 56
Table 6. South Point, Santa Rosa Island habitat distribution by species of concern. 56
Table 7. Data layers: example graphic, layer label as displayed, source file and description of content and source.. 60

LIST OF FIGURES
Figure 1. New multibeam bathymetry data collected to fill data gaps around Monterey Peninsula are shown in red shaded-relief. Previously collected multibeam data collected by SFML for DFG shown in gray. The new data more than doubles the high-resolution coverage... 10
Figure 2. New multibeam data coverage for central California, from Yankee Point to Point Sur, shown in gray scale (left) and colored by depth (right). 11
Figure 3. Full multibeam data coverage for the Del Monte shale beds in gray-scale shaded relief. ... 12
Figure 4. Full multibeam data coverage for Pt. Piños to Cannery Row in gray-scale shaded relief. .. 13
Figure 5. Full multibeam data coverage for Pt. Piños to Cannery Row in shaded relief colored by depth at 10m intervals... 14
Figure 6. Full multibeam data coverage for Pt. Piños to Cypress Pt. in shaded relief. 15
Figure 7. Full multibeam data coverage for Pt. Piños to Cypress Pt. in shaded relief colored by depth at 10m intervals... 16
Figure 8. Full multibeam data coverage for Cypress Pt. to Pt. Lobos in shaded relief. ... 17
Figure 9. Full multibeam data coverage for Cypress Pt. to Pt. Lobos in shaded relief colored by depth at 10m intervals... 18
Figure 10. Full multibeam data coverage for Pt. Lobos Peninsula in shaded relief. 19
Figure 11. Full multibeam data coverage for Pt. Lobos in shaded relief colored by depth at 10m intervals... 20
Figure 12. Full multibeam data coverage for Yankee Pt. to Soberanes Pt. in shaded relief. ... 21
Figure 13. Full multibeam data coverage for Yankee Pt. to Soberanes Pt. in shaded relief colored by depth at 10m intervals... 22
Figure 14. Full multibeam data coverage for Soberanes Pt. to Kaslers Pt. in shaded relief. ... 23
Figure 15. Full multibeam data coverage for Soberanes Pt. to Kaslers Pt. in shaded relief colored by depth at 10m intervals... 24
Figure 16. Full multibeam data coverage for Kaslers Pt. to Hurricane Pt. in shaded relief. ... 25
Figure 17. Full multibeam data coverage for Kaskers Pt. to Hurricane Pt. in shaded relief colored by depth at 10m intervals. ... 26
Figure 18. Full multibeam data coverage for Hurricane Pt. to Pt. Sur in shaded relief. ... 27
Figure 19. Full multibeam data coverage for Hurricane Pt. to Pt. Sur in shaded relief colored by depth at 10m intervals. ... 28
Figure 20. Model 4 – Deep: Distance to Optimal – TPI50 Peaks + Slope + Rugosity + Depth. Displays distribution and abundance of three species in the spring dataset with preference for deeper water: S. serranoides/S. flavidus, S. rosaceus, and S. rubrivinctus. ... 29
Figure 21. Location of squid egg mop concentrations displayed on multibeam bathymetry DEM and sidescan sonar image of squid egg masses found lying along a fault line near Pt. Cabrillo, Monterey Peninsula. ... 30
Figure 22. The Channel Marine Reserve Network consists of twelve MPAs, ten of which are designated as “no-take zones” and two, which allow limited recreational fishing .. 32
Figure 23. DFG priority mapping sites in CIMPA network given to the SFML. Green areas are the MPAs, unfilled hatched areas are the adjacent control sites for the MPA, and red circles indicate the three top priority sites mapped for this project (Gull Island, Carrington Point, South Point). The thin red line is the three-mile state waters limit.. 33
Figure 24. Multibeam bathymetry data in shaded relief for Carrington Pt., Santa Rosa Island. ... 38
Figure 25. Multibeam bathymetry in shaded relief, colored by depth for Carrington Point, Santa Rosa Island .. 39
Figure 26. Sidescan sonar mosaic for Carrington Pt., Santa Rosa Island 40
Figure 27. Slope analysis of the multibeam bathymetry DEM for Carrington Pt., Santa Rosa Island .. 41
Figure 28. Rugosity analysis of the multibeam bathymetry DEM for Carrington Pt., Santa Rosa Island ... 42
Figure 29. Rocky habitat map derived from slope and rugosity analyses of the multibeam bathymetry DEM for Carrington Pt., Santa Rosa Island. 43
Figure 30. Multibeam bathymetry in shaded relief for Gull Island, Santa Cruz Island. ... 44
Figure 31. Multibeam bathymetry in shaded relief, colored by depth for Gull Island, Santa Cruz Island .. 44
Figure 32. Sidescan sonar mosaic for Gull Island, Santa Cruz Island 45
Figure 33. Slope analysis of the multibeam bathymetry DEM for Gull Island, Santa Cruz Island ... 45
Figure 34. Rocky habitat map based on the slope and rugosity analyses of the multibeam bathymetry DEM for Gull Island, Santa Cruz Island 46
Figure 35. Multibeam bathymetry in shaded relief, for South Point, Santa Rosa Island. 47
Figure 36. Multibeam bathymetry in shaded relief, colored by 10m depth contours for South Point, Santa Rosa Island. ... 48
Figure 37. Slope analysis of the multibeam bathymetry DEM, for South Point, Santa Rosa Island ... 49
Figure 38. Rugosity analysis of the multibeam bathymetry DEM, for South Point, Santa Rosa Island ... 50