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ABSTRACT 
 
Due to the decline of fisheries throughout the world, there is an increasing demand for more 

stock assessment data by fisheries managers.  Along the Pacific coast of North America there are 

insufficient stock data for most rockfish species, which compose one of the most valuable 

commercial and recreational fisheries in California.  One approach being explored for more 

efficiently generating stock assessment data over large areas is the use of habitat-based 

community assessment.  The general hypothesis is that because rockfish are not randomly 

distributed across habitats, it should be possible to model and predict their distribution and 

abundance based on habitat maps and biological data.  The purpose of this study is to test this 

hypothesis using autoclassification of multibeam bathymetry and acoustic backscatter data along 

with submersible video data of the seafloor and rockfish from Cordell Bank National Marine 

Sanctuary to determine how well rockfish distribution of three species of rockfish (Sebastes 

flavidus (yellowtail), S. rosaceus (rosy), and S. elongatus (greenstriped)) can be modeled based 

on seafloor habitat parameters.  In addition, those methods were compared to methods using the 

video data alone.  General linear models (GLMs) were created using rugosity, slope, aspect, 

depth, and topographic position index analyses of bathymetric digital elevation models and 

supervised surface texture classification from the backscatter mosaic along with the 

presence/absence points for the three species of rockfish.  These models proved to be the most 

efficient at accurately predicting the distribution of S. rosaceus with an average accuracy of 81%.  

The GLMs correctly predicted the occurrence of S. flavidus 76% of the time and the occurrence 

of S. elongatus 62% of the time.  When compared to the analysis of the video results, the GLMs 

were better at predicting the abundance of S. flavidus and S. rosaceus with percent errors of 16% 

and 13% respectively.  Both methods were equal for S. elongatus.  The techniques used in this 

study could be used for management purposes such as planning and evaluating locations for 

marine protected areas.     
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1 INTRODUCTION 

 Fisheries throughout the world are in decline.  Currently, all of the world’s seventeen 

oceanic fisheries are at or below sustainable yield (Wilson, 2002).  In addition, the Food and 

Agricultural Organization of the United Nations (FAO) reports that “69% of the world’s [fish] 

stocks…are either fully to heavily exploited, overexploited, or depleted…and therefore are in 

need of urgent conservation and management measures” (Lauck et al., 1998).  This is mostly due 

in part to the human mismanagement of this resource (Clark, 1996).  

 Along the Pacific Coast of the United States, rockfish make up one of the most 

economically important fisheries in California.  However, because they are slow-growing, long-

lived, and old at reproductive maturity, they are extremely vulnerable to fishing pressure.  Recent 

findings show that some of these species are being harvested at unsustainable levels.  Although 

there is a need, it is difficult to manage these fisheries because there are insufficient data on the 

distribution, abundance, and habitat characteristics of the different species (Yoklavich et al., 

1999).  

Therefore, in order to create better management policies, there is a call for more and 

better stock assessment data.  Along the Pacific Coast, only 22% of the rockfish species have 

ever been assessed and many of them are commercially important species.  In addition, from the 

rockfish that were assessed, half of them were reported as “overfished” or “approaching 

overfished condition”.  This lack of data is mostly due in part to the inefficiency of single species 

stock assessments (Nasby-Lucas et al., 2002).  There are limitations in the ability of many of the 

field sampling techniques to get an accurate stock representation.  For example, bottom trawls 

are extensively used to determine the abundance of fish along the continental shelf and some 

offshore rocky banks.  However, this technique precludes enumeration of many of the fish on top 

of banks and has proven difficult to use in any rocky area (Starr et al., 1995). 

As a possible solution to the problem of incomplete stock data, there is the growing use 

of habitat-based community assessment.  This technique recognizes that species are not 

randomly distributed throughout their environment.  Rather, the distribution and abundance of 

many rockfish species are associated with the assortment, quality, and extent of benthic habitats 

(Starr et al., 1995; Nasby-Lucas et al., 2002).  Furthermore, in the marine environment, it has 
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been found that habitat properties are better at capturing the community-level and ecosystem-

level schemes rather than relying on species richness and endemism (Leslie et al., 2003).  

Species-specific habitat modeling based on remotely sensed seafloor geomorphology and 

texture data may prove to be an efficient technique for the stock assessment of rockfish and other 

groundfish species.  This technique can help to distinguish between the different types of habitats 

as well as give information on the abundance and distribution of different species.  With the 

advent of new technologies, sonar systems are now in existence that provide high enough 

resolution bathymetric and backscatter data for the classification of habitats over large areas 

(Nasby-Lucas et al., 2002).  These data can be included with groundtruth data and fish 

observation data to provide an accurate habitat model that includes species abundance and 

distribution.   

This approach has been applied with some success by a number of researchers in the 

terrestrial realm.  Many studies have been completed in order to relate vegetation distribution 

and abundance to environmental parameters such as topographic position index, climate, aspect, 

rainfall patterns, etc.  For example, Austin et al. (1994) used presence/absence data from nine 

different eucalyptus species in Australia and variables such as variability in rainfall, variability in 

temperature, seasonal levels of radiation, topographic position, lithology class, and nutrient index 

to create a statistical model to predict the probability of occurrence of this eucalyptus where 

presence/absence data was not available.  The authors completed this analysis by using 

generalized linear models (GLMs).  Using these models, they were able to accurately predict at 

least 90% of the presence/absence for 7 of the species and more than 80% of the 

presence/absence for the other two species.  This study concluded that the equations from the 

GLMs provide adequate models for these nine species of eucalyptus (Austin et al., 1994). 

In addition to terrestrial vegetation, these same modeling techniques have been used to 

relate mobile terrestrial animals to habitat parameters and produce predicted distribution maps.  

One such study was completed by Jaberg and Guisan (2001) to model the distribution of bats in 

relation to landscape structure.  Again, the authors in this study used GLMs to predict the 

occurrence of bats in areas where no presence/absence data exists.  They used presence/absence 

points from bat surveys and related these observations to a digital elevation model (DEM) of the 

area and its derived products.  In addition, they created land-cover classes by using the percent 

coverage of certain landscape elements.  The authors found that correlations between the 
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observed species regularity and predicted values were fair to good and the overall prediction 

success of the models was 71% to 87%.  In addition they found that, although their models were 

fairly successful for these highly mobile species, model stability and agreement tended to 

decrease with increases in the mobility of the species (Jaberg and Guisan, 2001).  However, their 

models were limited to large scale variations in landscape features because their DEMs were 

gridded at 25m and 100m resolution.  Although this technique of using coarse resolution grids 

may work for species such as bats, many species, such as rockfish, are associated with features 

that can only be delineated on a finer scale.  

Compared to the amount of modeling studies used to predict the occurrence of terrestrial 

species, very few studies have been completed on marine organisms.  One study combined 

multibeam and backscatter data with video data to classify habitats and associate fish with those 

habitats on Heceta Bank, Oregon.  The main finding from this study was that sonar can be used 

along with submersible data to allow for habitat-based stock assessments of groundfish species 

(Nasby-Lucas et al., 2002).  The authors were able to predict the abundances of several species 

of groundfish by breaking the area into defined habitat patches and using the density of fish from 

the video data to determine the density of fish throughout that habitat.  However, this study did 

have some shortcomings.  First, the substrate types were visually interpreted.  Although this is 

often a useful technique for distinguishing between different habitats, it is time consuming and 

very subjective.  Second, they did not have extensive video data that covered all the 

representative habitats on Heceta Bank.  Therefore, it was difficult to extrapolate their findings to 

the entire bank.  Finally, they did not have enough video data to test their density predictions.  

They could not take a subset of their video to determine the accuracy of their results because all 

the video footage was used in making their predictions (Nasby-Lucas et al., 2002).     

A similar study that was able to successfully predict habitat suitability was recently 

completed by Iampietro et al. (2005).  Here the authors were able to create predictive models of 

habitat suitability and fish distribution using analyses on a high resolution multibeam bathymetry 

DEM from the Del Monte Shale Beds in Monterey Bay, California.  These data were then used 

to make stock estimates for the study area based on topographic position index (TPI).  Although 

successful in the ability of their model to accurately predict the habitat suitability for 

approximately 80% of the rockfish observed in ROV video transects, this study was conducted 

across a relatively shallow depth range (15-75m) and over relatively low habitat relief (<2m).  
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One of the shortcomings of this study was that the resolution of the DEM (1-2m) was very close 

to the magnitude of the relief and could not support slope or rugosity analyses which could have 

further improved the accuracy of the models beyond the use of TPI alone.  Also, the models 

created by Iampietro et al. lacked statistical rigor; parameters and weighting factors used in their 

simple additive models were chosen by the researchers based on their observations and trial-and-

error experimentation, rather than being fitted by a predictive statistical modeling technique such 

as GLM (Iampietro et al., 2005).   

Therefore, the purpose of this capstone is to determine how well the approach taken by 

Iampietro et al. (2005) in shallow, low relief rockfish habitats can be applied to deeper, high 

relief rockfish habitats where the use of slope and rugosity models can be supported in addition 

to TPI.  The study site for this project, Cordell Bank, is a granitic bank located 22 miles offshore 

from Pt. Reyes, California.  Previously part of the Sierra Nevada Mountains about 93 million 

years ago, Cordell Bank was sheered off the North American plate by the Pacific Plate and 

carried north until it reached its current location.  Between 20,000 and 15,000 years ago, when 

sea level was 120 meters below its current level, the bank was a true island (Cordell Bank 

National Marine Sanctuary, 2007).  Now submerged, Cordell Bank offers an ideal location to 

conduct this study because it has a large depth range (40-200m), highly varied geomorphic relief 

(1-15m), and a substantial amount of biological video data from submersible transects (Figure 1).  

The combination of these characteristics allowed me to build upon the methods utilized by 

Iampietro et al. (2005). 
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Figure 1:  Location of Cordell Bank in relation to Pt. Reyes, California.  Multibeam bathymetry 
digital elevation model of Cordell Bank shown in shaded relief and colored by depth, with red 
being the shoalest soundings. (Image resolution:  3m; Coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; Multibeam survey completed fall 2005.) 

 

This study addressed the following questions: 

1) What seafloor habitat characteristics of Cordell Bank can be derived from high-

resolution multibeam sonar data?  

2) Can GIS landscape ecology modeling techniques make use of these sonar-derived 

habitat characteristics to accurately predict the distribution and stock sizes of three 

different species of rockfish:  yellowtail (Sebastes flavidus), rosy (S. rosaceus), and 

greenstriped (S. elongatus)?   

  H0:  There is no relationship between the sonar-derived habitat characteristics of 

Cordell Bank and the distribution of rockfish. 
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H1:  GIS Landscape ecology modeling techniques and multibeam bathymetry data  

can be used to more accurately predict the distribution of rockfish than 

submersible video transect survey techniques alone. 

If the alternative hypothesis proves to be correct and this is an effective technique, it could be 

expanded and tested over broader regions of the California coast, particularly in the design and 

placement of management areas for groundfish species.  The general approach was to use the 

CSUMB Seafloor Mapping Lab multibeam and sidescan data collected in fall of 2005 combined 

with submersible video data collected in 2002 by Cordell Bank National Marine Sanctuary to 

create habitat maps within GIS and attempt to associate the different species with their habitats.  

Habitat parameters including depth, slope, rugosity, topographic position index (TPI), and 

seafloor substrate type were then used to delineate the different habitats.    

 

2 METHODS 

Site Description 

In order to complete this study, both multibeam and backscatter data were collected by 

the Seafloor Mapping Lab at California State University, Monterey Bay aboard the R/V 

VenTresca at Cordell Bank National Marine Sanctuary, California.  Cordell Bank is a granitic 

bank located 40 km west of Point Reyes, California and is home to an array of marine organisms.  

Often considered a submerged island, Cordell Bank is 4.5 miles wide by 9.5 miles long with 

pinnacles coming to within 40m of the water’s surface.  The upwelling provided by the 

California Current makes this a prime location for a number of resident and migratory species.  

From the resident species, rockfishes (Sebastes spp.) are by far the most abundant fishes, making 

up 90% of the fish observations on the bank.  Although the sanctuary status of Cordell Bank does 

not protect them from fishing pressure, it does appear to provide a natural refuge for overfished 

species such as boccacio (S. paucispinis), yelloweye (S. rubberimus), vermilion (S. miniatas), 

and canary rockfish (S. pinniger) within its diverse habitats (Pirtle, 2005).   

 

Multibeam Bathymetric Sonar Data Collection and Processing 

Multibeam bathymetric sonar is collected by using sound beams to ensonify a large swath 

of the seafloor.  One transmit beam, which is wide across-track (>150˚) and narrow along-track 
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(1.5˚), is released from the sonar head at equally timed intervals as the vessel travels through the 

water.  Once the beam bounces off of the seafloor and travels back up to the sonar head, it is 

intercepted by the receive array and broken up into 101 1.5˚ x 1.5˚ individual “beams.”  Each 

beam is associated with a two-way travel time and a velocity.  This gives depth data across the 

entire 150º swath to create topographic maps of the seafloor (Figure 2).  These maps can be used 

to derive characteristics that allow for the delineation of habitats such as slope, rugosity, and 

topographic position index. 

 
Figure 2:  Three-meter resolution digital elevation model (DEM) of Cordell Bank shown in 
shaded relief and colored by depth produced from the multibeam data collected by the Seafloor 
Mapping Lab at California State University, Monterey Bay.  (Image resolution:  3m; Coordinate 
System:  UTM 10N WGS 84; NOAA Chart 18640, soundings in fathoms; Multibeam survey 
completed fall 2005.) 
       

The multibeam and backscatter data for this project were collected over 10 days in 

September and October of 2005 at Cordell Bank National Marine Sanctuary located 40km west 

of Pt. Reyes.  To collect the data, a pole-mounted Reson SeaBat 8101 sonar head with 101 1.5° 
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beams was used.  During collection, the data were collected along with corrections for pitch, roll, 

heave, and heading using the Applanix POS/MV heading and motion sensor with ±0.02º 

accuracy.  In addition, the position was provided by a C-Nav GPS receiver mounted on the boat.  

All these data were captured using a Triton Imaging, Inc. Isis Sonar data acquisition system, 

which also displayed the data in real-time through a program called DelphMap.         

After the collection was complete, the data were brought back into the lab for post-

processing.  The multibeam data were imported into Caris HIPS software where they were 

corrected for errors in attitude, tide, and sound velocity corrected with data collected by a sound 

velocity profiler.  Then they were cleaned using standard multibeam processing procedures in 

Caris HIPS.  Following cleaning, the data were exported as XYZ (Easting, Northing, depth) data 

from the bathymetry associated with statistical error (BASE) surface created within Caris.  This 

process, exports XYZ point data at regularly-spaced intervals equal to the resolution of the 

BASE surface.  Once exported, they were brought into a program called Fledermaus for quality 

control (QC) to verify that there were no spikes or erroneous data points remaining.  Subsequent 

to QC, the data were exported as an ArcView Grid for GIS analysis.     

After processing the data, the cleaned datasets were brought into ArcGIS for analysis.  

First, the ArcView grid exported from Fledermaus was brought into ArcGIS where it was 

projected as a digital elevation model (DEM).  A DEM is a raster dataset that consists of 

elevation values at regularly spaced intervals.  Since many species of rockfish prefer rocky areas 

with high relief or areas of large boulders and stones, analyses were performed on the DEM to 

delineate these different habitats. 

 

2.1 Slope Analysis 

The first type of analysis used was a slope analysis.  Slope is calculated by determining 

the max slope value between an individual DEM cell and its eight neighbors.  Slope analysis was 

completed in ArcGIS using the Spatial Analyst tool to create a new raster dataset, which includes 

the slope value for each cell in the DEM.  These slope values were then broken up into the slope 

categories from the deep water marine benthic habitat classification scheme (Greene et al., 1999) 

(Table 1).  Slope could possibly be a good predictor of rockfish abundance because areas with 

high slope values are often associated with high relief.    
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Table1:  Seafloor slope categories based on the deep water marine benthic habitat classification 
scheme (Greene et al., 1999).    

Slope Category 
0-1˚ Flat 
1-30˚ Sloping 
30-60˚ Steeply Sloping 
60-90˚ Vertical 
>90˚ Overhang 

 

2.2 Multibeam Substrate Analysis 

The second type of analysis used was a rugosity analysis.  Rugosity is the ratio of surface 

area to planar area of the terrain, which can be used to measure the roughness of the seafloor.  

Flat, smooth areas have rugosity values near 1 while higher values are associated with areas of 

higher relief or bumpiness.  This could be a good predictor of rockfish abundance because they 

tend to situate themselves in crevices or between rocks.  Where rugosity is high, there is a greater 

amount of potential habitat space for the rockfish.  Rugosity analysis calculates the surface area 

ratio for each cell in a DEM grid using the elevation of the cell and its eight neighbors. Rugosity 

grids were created using the Benthic Terrain Modeler (BTM) extension for ArcGIS.  The BTM 

was created by Davey Jones' Locker Seafloor Mapping and Marine GIS Laboratory, Department 

of Geosciences at Oregon State University, and the National Oceanic and Atmospheric 

Administration (NOAA) Coastal Services Center (Wright et al., 2005).  The rugosity tool in the 

BTM is an adaptation of the Surface Areas and Ratios extension for ArcView 3.x (Jenness 

Enterprises, 2005).   

From the rugosity analysis, a binary raster dataset was created that only includes two 

values:  0 for soft sediment and 1 for rocky substrate.  The breakpoints for these two classes were 

rugosity values of 1-1.05 for soft sediment and >1.05 for hard substrate (rock).  To determine 

how well the class breaks matched up with a visual interpretation of the substrate type, 100 

random points were placed throughout the grid and were visually interpreted and attributed with 

values of 0 or 1 for soft sediment or hard substrate, respectively.  The visual interpretation was 

then compared with the supervised classification from the rugosity grid and an accuracy 

assessment was done by determining the percentage of points that were classified accurately by 
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dividing the number of points where the results were the same for both the automated and visual 

classifications by the total number of accuracy assessment points. 

 

2.3 Topographic Position Index (TPI) Analysis 

Topographic position index (TPI) is a measure of relative elevation, which indicates the 

position of a given point in the overall surrounding landscape. TPI can be used to identify and 

delineate landforms such as peaks, ridges, cliffs, slopes, flat plains, and valleys, and is calculated 

by comparing the elevation of each cell in a DEM to that of its surroundings. Because the 

neighborhood size of the surroundings used for the elevation comparison can be adjusted, TPI 

can be calculated at various scales. Thus, an analysis size can be chosen that will identify 

features of any desired size, ranging from small-scale features such as the tops of boulders and 

pinnacles, to entire reefs, to regional-scale features such as seamounts (all classified as "peaks" at 

different scales). Likewise, TPI can be used to locate fissures and cracks in rock, sand channels, 

and submarine canyons (TPI "valleys" of increasing scale). In fact, the only limiting factor is the 

resolution (cell-size) of the DEM, which determines the minimum scale of features that can be 

delineated. 

The TPI analysis employed in this study was done using the algorithm of Weiss (2001), 

which uses an annulus- ("donut") shaped neighborhood. TPI is calculated using the formula: 

 

tpi<scalefactor> = int((dem - focalmean(dem, annulus, irad, orad)) + .5) 

where: 

scalefactor = outer radius in map units 

irad = inner radius of annulus in cells 

orad = outer radius of annulus in cells 

 

The scale of the analysis is defined by the inner (irad) and outer (orad) radii of the 

annulus neighborhood. The results of this calculation can range from strongly positive (areas that 

are higher than their surroundings at the specified scale), to strongly negative (areas that are 

much lower than their surroundings). Intermediate values define irregularly sloping areas, while 

flat areas and areas of constant slope result in values near zero. Because the magnitude and range 

of the results are DEM-specific, the initial TPI cell values are classified into standard deviation 
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classes, which are categorized into classes such as "peak", "slope", and "valley". In order to 

differentiate the ambiguous near-zero TPI values into "slope" and "flat" classes, the previously 

mentioned slope grid derived from the DEM is used, with a slope value of 5° serving as the 

break point between the two classes. 

TPI products were created using the bathymetric position index (BPI) grid creation and 

classification tools included in the BTM to create grids at a variety of scales ranging from 30m to 

240m (orad), with a 5-cell (15m) annulus thickness (orad - irad).  The Standardize BPI Grids tool 

was then used to standardize the outputs from the raw BPI analysis.  Since the BPI values for the 

broad scale and fine scale grids differ due to the spatial autocorrelation of the data (i.e. locations 

that are closer together are more related than locations that are farther apart), the range of BPI 

values increases with scale.  Therefore, the standardization of the BPI grid allows for the 

classification of BPI datasets at differing scales (Weiss, 2001).  The Standardize BPI tool utilizes 

the following algorithm within the Raster Map Algebra Operation object available through 

ArcGIS Spatial Analyst to standardize TPI grids by converting them to z-scores: 

 

TPI<scalefactor>_s = int((((TPI<scalefactor> - mean) / std dev) * 100) + 0.05) 

 

scalefactor = outer radius in map units * input bathymetric data set resolution(cell size) 

mean = mean cell value across TPI data set 

std dev= standard deviation of cell values across TPI data set 

 

This process was used to create standardized grids for each scale of raw TPI grid.  The resulting 

standardized grids have x = 0 and SD = 100.  

Once the TPI grids were standardized, slope position grids were created by classifying 

the standardized grid cell values into standard deviation classes with 0.5 standard deviation 

increments (<-1.00, -1.00 to -0.50, -0.50 to 0.50, 0.50 to 1.00, and >1.00) using the 

reclassification tool within Spatial Analyst to assign each class a value from 1 to 6, respectively, 

excluding 4.  Next, the Map Algebra tool was utilized along with the slope grid to split the ±0.5 

standard deviation class into flat (slope < 5°, class 3) and slope (slope >= 5°, class 4) classes.  

This process produced a slope position grid with six classes that were assigned the following 



 12

landscape feature values:  1 = Valley/Crevice, 2 = Lower Slope, 3 = Flat/Plain, 4 = Middle 

Slope, 5 = Upper Slope, and 6 = Peak/Ridge.    

 

Acoustic Backscatter Data Collection and Processing 

Acoustic backscatter data (also known as sidescan data) are collected using sonar, but 

rather than measuring depth, the intensity of the return echo is recorded.  This allows for the 

classification of different substrate types due to the differences in amplitude of the returning 

sound.  For example, the sound returning from a rock would have greater amplitude than the 

sound returning from soft sediments which tend to absorb more and reflect less of the sonar’s 

transmitted sound.  In addition, the orientation and texture of the substrate also affect the 

amplitude of the returning sound.  The backscatter data can be converted into a georeferenced 

sonograph mosaic for use in the visual interpretation or supervised classification of the surface 

texture of the seafloor. 

Both the multibeam data and the acoustic backscatter data were processed and used for 

habitat analysis.  The same raw XTF files used for the multibeam were brought into Isis Sonar 

for sidescan processing.  Within Isis, each track line was individually mosaicked and exported 

and brought into DelphMap where they were exported as geotiffs.  Next, the data from each 

individual survey track line were brought into a GIS program called TNTmips where the usable 

data from each line was extracted and put into a chosen order to create an acoustic backscatter 

mosaic of the entire site.  The acoustic backscatter mosaic was exported as a geotiff image for 

analysis (Figure 3). 
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Figure 3:  Mosaic created from the acoustic backscatter data collected at Cordell Bank.  The 
darker areas are rocks or coarser sediment while the lighter areas are mud or finer sand.  (Image 
resolution:  0.5m; Coordinate System:  UTM 10N WGS 84; NOAA Chart 18640, soundings in 
fathoms; Survey completed fall 2005.)   
 

2.4 Acoustic Backscatter Analysis and Habitat Classification  

 After processing the backscatter data, the geotiff image created in TNTmips was brought 

into custom designed software to calculate homogeneity and entropy and output geotiffs with the 

calculated values (Cochrane and Lafferty, 2002).  These values are calculated by looking at all 

the pixels in an 11 x 11 co-occurrence matrix and assessing the spatial relationship of pixel 

intensities.  Entropy grids were created by determining the degree of difference between the 

pixel intensities while homogeneity grids were created by determining the degree of similarity 

between the pixel intensities (Intelmann and Cochrane, 2006).   

Once created, the entropy and homogeneity grids were layered with the backscatter 

mosaic inside ArcGIS for the completion of a supervised classification of substrate type.  The 
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images were classified into three categories of bottom type using the maximum likelihood 

classification (MLC) tool in Spatial Analyst:  soft, mixed, and hard bottom.  The MLC works by 

determining the range of pixel values from the different signatures and using those pixel values 

to classify different sediment types throughout the image.  Once good signatures were chosen for 

the MLC and a relatively clean image was created, the image was cleaned further using the 

Raster Painting tool within spatial analyst.  Since no data is collected directly beneath the sonar 

head (at nadir) when acquiring sidescan data, ‘stripes’ end up in the final image.  During the 

MLC, much of this ‘data’ was misclassified into the rock and mixed categories.  In order to edit 

the misclassified data at nadir, a Euclidean Distance Grid was created and a new MLC was 

performed using signatures placed within the misclassified data at nadir.  This process created a 

new grid that was reclassified and utilized to create a polygon shapefile to extract out the 

misclassified values at nadir.  The Block Statistics Majority tool with Spatial Analyst was used to 

interpolate more accurate values into the areas surrounding nadir and these values were merged 

with the original grid.  Then, six video transects were used to verify the accuracy of this 

classification by attributing points along each transect with the type of substrate identified in the 

video and then comparing the visual interpretation to the supervised classification of the acoustic 

backscatter.   

Once a clean image was created, the classification was converted to a polygon shapefile.  

Attributes were then added to each of the polygons based on the Greene et al. (1999) deep-water 

marine benthic habitat classification scheme.  These attributes included the following:  

megahabitat, seafloor induration, seafloor slope, seafloor complexity, depth, macro/micro 

habitat, and geologic units.  

 

2.5 Rockfish/Habitat Associations Analysis Using GLMs 

For this analysis, three species of rockfish were chosen:  S. flavidus, S. elongatus, and S. 

rosaceus.  Because the original fish observation data from submersible video analysis consisted 

of point locations with multiple fish counts by species, these data were converted to 

presence/absence format for use in binomial logistic regression models. To accomplish this, the 

Random Point Generator extension for ArcView 3.x (v1.3, Jenness Enterprises, 2005) was used 

to “explode” the single location for each fish observation into n randomly-located points within a 

10m radius of the original location, where n = the number of fish of the species of interest 
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observed at that location. A 10m radius was chosen based on the effective visibility during the 

submersible dives. Thus, each multiple-fish observation point was converted into many single-

fish “presence” points. To create point locations for fish “absence”, the submersible transect 

navigation data were randomly subsampled after excluding all locations where fish were 

observed. In this manner, a series of point locations were created where the absence of fish was 

confirmed by direct observation. All fish presence and absence point locations were created in 

the ESRI shapefile format. 

The presence and absence point location shapefiles were used together with the DEM and 

derived habitat parameter rasters in ArcGIS to create predictive models using the ArcRstats 

toolbox (Best et al., 2005).  ArcRStats integrates ArcGIS with the R statistical package to 

produce multivariate habitat prediction rasters.  Within this toolbox, the generalized linear model 

(GLM) tool was utilized to produce predictive grids for each species of rockfish based on their 

associations with the habitat on which they were found.  GLMs are similar to linear models but 

they are believed to be better for analyzing ecological relationships because they do not force the 

data into unnatural scales, which would be required for a linear model.  GLMs require the data to 

be neither linear nor have constant variance and they are capable of using data from a number of 

different probability distributions (Guisan et al., 2002).  The generalized linear model within 

ArcRStats works by sampling the values of each of the predictor rasters (i.e. slope, rugosity, 

depth, etc.) underlying the presence and absence points locations and then using those data to 

create prediction rasters that display the probability of species occurrence for unsampled 

locations (Guisan et al., 2002). A binomial logistic regression model is used.     

Due to the complexity of the GLM analysis and the extremely large data arrays required, 

computer memory addressing limitations (4 GB in a 32-bit OS) required subdivision of the 

Cordell Bank datasets into six smaller areas.  The bank was broken up systematically by dividing 

the bank into six relatively equal parts (Figure 4).     
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Figure 4:  Map displaying Cordell Bank subdivided into six blocks.  Each separate block is 
outlined and labeled in red.  (Image resolution:  3m; Coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; Multibeam survey completed fall 2005.)   
 

The GLM analyses were performed using the fish presence/absence and habitat raster 

data for each block separately.  However, the same general methods were applied to each block.  

Each time the ArcRstats GLM tool was used, the appropriate fish presence/absence point 

locations were specified along with the habitat parameter rasters of interest.  These rasters 

included the bathymetric DEM and derived parameters such as aspect, slope, rugosity, the 

substrate grid from the rugosity analysis, TPI at the broad and fine scale levels, as well as 

substrate classification from the acoustic backscatter analysis.  Because results from preliminary 

models suggested that rugosity and slope were correlated, these variables were not used together 

in any of the models.  Separate models containing either rugosity or slope were tested to 

determine which model was a more effective predictor of fish distribution in each case was and 

the best model was chosen for analysis.  If any of the predictor variables included in the model 
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were not significant in the model, those variables were removed and the model was re-run 

without them.  The GLM tool model outputs include a prediction grid, a summary of the 

analysis, plots showing the correlations being paired predictor variables used in the model, an R 

workspace containing all of the data used in the model, and histograms for each of the input 

rasters showing the distribution of the presence and absence points vs. the values of each raster. 

To test model significance, a D2 value, which is equivalent to the R2 in linear models, 

was calculated by using the following equation:   

D2 = (Null Deviance – Residual Deviance)/ Null Deviance 

Where:   

Null deviance = the deviance of the model with the intercept only and 

Residual deviance = the deviance that remains unexplained by the model after the 

variables have been included. 

Since a perfect model would have no residual deviance (residual deviance = 0), a D2 value close 

to one is an indication of good model fit.  Since each of the models includes a different number 

of observations and a different number of predictors, those values have to be taken into account 

for the D2 value to be representative of the real fit.  Therefore, the equation for the adjusted D2 

value for GLMs is: 

D2 = 1 – [(n - 1)/(n - p)] x [1 - D2] 

Where: 

n = the number of observations in the model and 

p = the number of parameters in the model 

Therefore, the D2 value increases with an increasing number of observations or a decreasing 

number of parameters and provides an indication about the performance of the model.   

 Finally, in order to test how well the model predicts the location of each species of 

rockfish, the reserved fish presence/absence point locations were plotted on top of the model 

results raster. The probability values from the predictive model raster were sampled at each 

reserved fish presence/absence point location. Then, a 2x2 contingency table was created that 

displayed the proportion of the evaluation points that were correctly classified (i.e. presence 

points that fell into areas of high probabilities of occurrence and absence points that fell into 

areas of low probabilities of occurrence).  For the contingency table analysis, a threshold value 

of 0.4 was used as an “expected” value for low probability of occurrence fish (absence), while 
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0.6 was considered high probability of occurrence (presence).  These values were chosen 

because many modeling studies use a threshold of 0.5 and, by increasing the threshold to 0.6, the 

chance of predicting rockfish where there were none observed is decreased.  

 

2.6 Submersible Video Data Analysis 

 In order to determine the locations and counts of the different species of fish on Cordell 

Bank, submersible video data was used.  This video data was collected in the fall of 2002 by 

researchers aboard the Delta submersible supported by the R/V Velero IV.  The personnel for this 

project included collaboration between the Delta crew and scientists from Cordell Bank National 

Marine Sanctuary (CBNMS), the National Marine Fisheries Service Santa Cruz laboratory, the 

California Department of Fish and Game, and Washington State University.  Between September 

22nd and October 3rd, a total of 62, 15 minute transects were completed in 28 dives.  Most of the 

transects were concentrated on the bank in depths of 50 to 100m with some on the continental 

shelf (80-150m) and continental slope (180-350m) (Cordell Bank National Marine Sanctuary 

Cruise Report, 2002).  

 The dive videos were then used to quantify fish.  J. Baltan and L. Snook assigned fish 

observations, including the identification, abundance, and maximize size of the fish, to individual 

times along the transect.  These times were then associated with the coordinates of the Delta 

submersible to give location to the fish observations.  The rockfish species (Sebastes spp.) most 

commonly identified on the bank included yellowtail (S. flavidus), widow (S. entomelas), rosy 

(S. rosaceus), rosethorn (S. helvomaculatus), swordspine (S. ensifer), starry (S. constellatus) 

boccacio (S. paucispinis), canary (S. pinniger), yelloweye (S. ruberrimus), vermillion (S. 

miniatus), and greenstriped rockfish (S. elongatus). 

 The following three species of rockfish observed within the video data were chosen for 

the habitat association analysis:  S. flavidus, S. rosaceus, and S. elongatus.  These three species 

were chosen due the number of observations on the bank and the different types of habitats that 

they are associated with.  Both S. flavidus and S. rosaceus are often associated with rocky 

habitat.  S. flavidus, however, tend to be found on high relief habitat such as boulders and sheer 

rock walls while S. rosaceus are found over a broader range of habitat types from areas with low-

lying rocks and sand to high-relief rock.  On the other hand, S. elongatus are mainly associated 

with low-relief habitats including cobble, rock rubble, and mud (Love et al., 2002).  
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 From this processed data, figures were created that show the distribution of the three 

species of interest along depth and habitat gradients.  First, each fish observation was assigned to 

a depth class based off of the 3m resolution bathymetry DEM of Cordell Bank.  Then the total 

area observed in each of those depth classes was calculated by creating a 10m buffer around the 

points in each of the depth classes and calculating the area of the buffer. Ten meters was chosen 

for the buffer because the average visibility during the dives was 10m.  It was assumed that the 

fish counts included all the fish within the visibility range of the submersible.  Once the fish data 

were attributed with a depth class, the attribute table was exported from ArcGIS and brought into 

Excel for further analysis.  The data was broken up by species and then further into the different 

depth classes.  A density value was then calculated for each species in each depth class by 

dividing the total number of fish counted in that depth class by the total area that video data was 

collected from within that depth class.  The density of fish was then graphed by depth for each 

species. 

 Jodi Pirtle, a Masters student from Washington State University, previously characterized 

the habitat data from the video transects.  Therefore, her habitat classification was utilized for the 

video analysis.  She assigned habitat type based on a two-letter code using eight different 

categories of geological substrate (Table 2).  The primary code represents the substrate type that 

accounts for between 50% and 80% of the habitat patch.  The secondary code accounts for the 

substrate type that makes up 20 - 50% of the patch (Pirtle, 2005). 

 

Table 2:  One-letter code and its associated habitat type from the habitat analysis done on Cordell 
Bank based on the video data (Pirtle, 2005). 
One-Letter 
Code 

 
Substrate Type 

R Rock Ridge (high to low relief) 
B Boulder (high to low relief) 
C Cobble (low relief) 
P Pebble (low relief) 
G Gravel (low relief) 
F Flat Rock (continuous, low relief) 
S Sand Grains (grains distinguishable) 
M Mud (noticeable organic particles) 
 

 Prior to analysis, the video transects were separated into two subsets:  one subset that 

would be used to make predictions for the distribution and abundance of the rockfish (training 
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transects) and one subset that would be used to evaluate the accuracy of the predictions 

(evaluation transects).  Once sub-divided, the training transects were converted from a point 

shapefile to a polyline shapefile with a separate line for each transect using Hawth’s Analysis 

Tools within ArcGIS (Beyer, 2004).  A 10m buffer was created around each of the transect lines 

to acquire a total area covered by each transect.  Then, the percentage of the habitat types within 

each transect was calculated.  This percentage was used to determine the total area of each 

habitat type within all the training transects.  After that, the densities of S. flavidus, S. rosaceus, 

and S. elongatus were calculated for every habitat type by dividing the total number of fish in a 

habitat type by the total area of that habitat type found in the training transects.  The densities of 

the fish within the evaluation transects were also calculated using the same procedures. 

 

2.7 Comparison of Video Analysis versus GLM Predictions 

To determine the accuracy of the different techniques used to predict the abundance and 

distribution of fish, a comparison was made between the predictions made from the video 

analysis and those made from the GLMs.  First, the densities of the three species of fish found in 

each habitat type from the video analysis were used to predict the expected number of fish in the 

evaluation transects.  This was done by multiplying the density of fish per substrate type by the 

total area of each substrate type in the evaluation transects.  This calculation provided a 

prediction of the number of fish expected to be found in the evaluation transects based on the 

areas of the different substrate classes.  This process was completed on eight representative 

evaluation transects. 

Within the same eight evaluation transects, the total areas of each probability class from 

the GLM predictions were calculated and multiplied by the density of fish expected to be found 

in those probability classes.  Then, the fish from each probability class were added together to 

get the total number of fish expected to be found within each evaluation transect.  These values 

were then compared to the results from the video analysis predictions and the actual numbers of 

fish found in the evaluation transect to calculate a percent error between the predictions and 

observations for both the results from the video analysis and the GLM predictions.  These 

percent errors were then compared to determine which method was better at predicting rockfish 

abundance.   
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2.8 Stock Assessments 

 In order to determine the total stock for S. flavidus, S. rosaceus, and S. elongatus, the 

results from the GLM analyses were utilized.  However, prior to completing the stock 

assessments, the density of each species within each habitat type had to be calculated.  First, the 

point data from the fish observation shapefile were converted into lines using Hawth’s Analysis 

Tools.  A separate line was created for each transect within each dive.  Then, the buffer tool 

within Spatial Analyst was used to produce a 10m buffer around each transect track line.  Ten 

meters was chosen because the average visibility during the submersible dives was an average of 

10 meters to either side of the track.  The buffer shapefile was used as an extraction mask within 

each block so that the values from the prediction grids for each species could be extracted out.  

This produced prediction rasters that only encompassed the area where submersible surveys were 

conducted.  This raster dataset was reclassified into ten classes with increments of 0.1 from 0 – 1.  

Once reclassified, the raster dataset was converted to a polygon shapefile using the ‘Convert 

Raster to Features’ tool within Spatial Analyst with separate polygons for each probability class.  

The area was then calculated for each polygon and the areas within each class were added up to 

get a total area of each probability range for all transects in the different areas.  After the areas 

were determined for all the probability ranges, the total numbers of fish within each of those 

probability classes were counted.  Finally, the total number of fish observed from each 

probability class was divided by the total area of that habitat class within the transects.  This 

result gave an average density of fish that were observed within each probability class. 

 Once the density of fish in each habitat class was determined, these densities were 

multiplied by the total area of that habitat class in each area.  This process provided a calculated 

stock size for each species of fish within each area.  These values were then combined to 

determine the stock size of each species of fish over the entire site.  The errors associated with 

these stock counts were also taken into account by multiplying the percentage of error from the 

original by the stock predictions.        

 

3 RESULTS 

3.1 Multibeam Slope Analysis 
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 The results from the slope analysis shows that the majority of Cordell Bank falls into the 

“sloping” category (77%) where the degree of slope ranges from 1˚ to 30˚.  Areas with a slope of 

less than 1˚ make up 26% of the bank while the “steeply sloping” and “vertical” classes only 

make up a very small portion of the bank.  There were no slope values that fell within the 

“overhang” category (Table 3, Figure 5).     

Table 3:  Summary table of the results from the slope analysis.  Each of the categories is listed 
along with its corresponding area and the percentage of the site it makes up. 
Slope Class Area (m2) Area (km2) Percentage of Site 
1 (Flat 0-1˚) 32515692 32.5 26% 
2 (Sloping 1˚-30˚) 95957611 96.0 77% 
3 (Steeply Sloping 30˚-60˚) 558225 0.6 0.01% 
4 (Vertical 60˚-90˚) 1481 0.0 <0.00% 
5 (Overhang >90˚) 0 0 0% 

Figure 5:  Slope analysis of Cordell Bank, California divided into the seafloor slope categories 
from the deep water marine benthic habitat classification scheme (Greene et al., 1999)(See Table 
3).  (Image resolution:  3m; Coordinate System:  UTM 10N WGS 84; NOAA Chart 18640, 
soundings in fathoms; multibeam survey completed fall 2005.)       
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3.2 Multibeam Substrate Analysis 

 The substrate analysis of the multibeam data from Cordell Bank produced a grid that 

delineates between hard and soft substrate (Figure 6).  In this binary raster, soft substrates were 

given a value of “0” and hard substrates were given a value of “1.”  The hard substrate (rock) 

makes up 36 km2 (29%) and the soft substrate makes up 88 km2 (71%) of the survey area.  These 

classified values were compared to the visual interpretation and were found to be 94% accurate.   

 
Figure 6:  Rugosity (surface area : planar area ratio) values >1.05 were classified as rocky habitat 
to create a substrate classification grid.  (Image resolution:  3m; Coordinate System:  UTM 10N 
WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.)      
 

 

 

 



 24

3.3 Topographic Position Analysis (TPI) 

 The TPI analysis of Cordell Bank at four different scales (30m, 60m, 120m, and 240m) 

provided a range of different results (Figure 7).  The finer scale analyses provided fewer slope 

position classes than the broad scale analyses.  Using an annulus radius of 30m only provided 

four separate slope position classes (peak/ridge, middle slope, flat/plain, valley/crevice) (Figure 

7), while using an annulus radius of 240m provided all six habitat classes (Figure 8).   

 
Figure 7:  A fine scale (30m annulus) slope position grid derived from a TPI analysis performed 
on the 3m bathymetry data from Cordell Bank, California.  (Image resolution:  3m; Coordinate 
System:  UTM 10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey 
completed fall 2005.) 
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Figure 8:  A broad scale (240m annulus) slope position grid derived from a TPI analysis 
performed on the 3m bathymetry data from Cordell Bank.  (Image resolution:  3m; Coordinate 
System:  UTM 10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey 
completed fall 2005.) 
 

The most common habitat type across all scales was the “middle slope” class, which took 

up an area of 60-70% of the site in each analysis.  The least common class was the “upper slope” 

class.  This class only made up 4-6% of the bank in the broad scale analyses and did not ever 

appear in the fine scale analyses (Table 6). 
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Table 4:  Results from the topographic position index (TPI) classification of Cordell Bank.  Each 
habitat class is broken into the four different annulus sizes used to run the classification.  The 
area each habitat class makes up in the different classifications is reported in meters squared, 
kilometers squared, and the percentage of the site. 

Slope Position Class 
Annulus 
Radius(m) Area (m2) Area (km2) 

Percentage 
of Site 

30 2447451 2.4 2% 
60 6538113 6.5 5% 
120 4550364 4.6 4% 

1 
Peak/Ridge 
  
  
  240 4437405 4.4 4% 

30 0 0.0 0% 
60 0 0.0 0% 
120 7696062 7.7 6% 

2 
Upper Slope 
  
  
  240 4810410 4.8 4% 

30 84759093 84.8 68% 
60 80098812 80.1 65% 
120 78202386 78.2 63% 

3 
Middle Slope 
  
  
  240 77299092 77.3 62% 

30 23022072 23.0 19% 
60 17789562 17.8 14% 
120 21123783 21.1 17% 

4 
Flat/Plain 
  
  
  240 19181979 19.2 15% 

30 0 0.0 0% 
60 11547873 11.5 9% 
120 0 0.0 0% 

5 
Lower Slope 
  
  
  240 11129445 11.1 9% 

30 13916691 13.9 11% 
60 8170947 8.2 7% 
120 12572712 12.6 10% 

6 
Valley/Crevice 
  
  
  240 7286976 7.3 6% 

 

3.4 Acoustic Backscatter Analysis and Habitat Classification  

The results from the acoustic backscatter analysis produced a polygon shapefile that is 

attributed with a variety of different habitat characteristics including megahabitat type, substrate 

type, seafloor slope, seafloor complexity, geologic units, and macro/microhabitats (Figure 9).   
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Figure 9:  Habitat polygons generated from the acoustic backscatter analysis of Cordell Bank, 
California.  The polygons are colored by the different habitat attributes.  Over 100 habitat classes 
are included in this shapefile.  (Coordinate System:  UTM 10N WGS 84; NOAA Chart 18640, 
soundings in fathoms; survey completed fall 2005.) 
 

The megahabitat categorization for Cordell Bank was defined as two different types.  The 

area on the main bank was attributed with the letter “F” (flanks, continental slope, basin/island-

atoll flanks), which comprises a total area of 80 km2, while the area surrounding the bank was 

attributed with the letter “S” (shelf, continental and island shelves) and comprised a total area of 

47 km2 (Table 5).  

Table 5:  Megahabitat types for Cordell Bank, California from the Greene et al. deep water 
marine benthic habitat classification scheme (1999).  
Megahabitat Type Total Area (km2) Percentage of Site 
F  
(flanks, continental slope, basin/island-atoll flanks)  

 
80 

 
63% 

S  
(shelf, continental and island shelves) 

 
47 37% 
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In general, the bank area consists of hard and mixed substrates while the area surrounding 

the bank consists of softer substrates with mixed substrate up toward the northern portion of the 

survey area (Figure 10).   

 
Figure 10:  Substrate classification produced using the Maximum Likelihood Classification 
(MLC) performed on the acoustic backscatter form Cordell Bank, California.  (Coordinate 
System:  UTM 10N WGS 84; NOAA Chart 18640, soundings in fathoms; survey completed fall 
2005.) 
 

The different substrate types throughout Cordell Bank, California were given the following 

codes:  “h” for hard substrates, “m” for mixed substrates, and “s” for soft substrates.  Mixed 

substrate makes up the greatest area of the bank (48%) followed by hard substrate (29%) and soft 

substrate (23%).  The total areas of hard, mixed, and soft substrates from the acoustic backscatter 

analysis were 36 km2, 61 km2, and 29 km2, respectively (Table 6). 
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Table 6:  The substrate classification results from the acoustic backscatter analysis and the 
corresponding areas of each substrate class on Cordell Bank, California. 
Substrate Type Area (km2) Percentage of Survey Area 
Hard (h) 36 29% 
Mixed (m) 61 48% 
Soft Sediment (s) 29 23% 

 

3.5 Rockfish/Habitat Associations Analysis Using GLMs  

(The complete results for only the most extreme cases (best and worst) of the models for each 

species of fish are included in this results section.  The full results for all species in each block 

that were not included in this section can be found in the Appendix.) 

 

Sebastes. flavidus (Yellowtail Rockfish) 

The model results for S. flavidus varied from block to block.  The average adjusted D2 

value for all blocks was 0.26.  This is a fairly low average meaning that these models don’t have 

very high levels of performance.  However, even though these models had low D2 values, they 

correctly predicted a relatively high percentage of the probability of occurrence for the 

evaluation points.  The average percent correctly predicted for S. flavidus across all the blocks 

was 76%.  Overall, more errors of commission took place than errors of omission.  This means 

that the models were more likely to make an error where they predicted a high probability of 

finding S. flavidus in an area where no fish were observed during the video transects than they 

were to predict a low probability of finding S. flavidus in an area where fish were actually 

observed.  Therefore, on average, the models slightly over-predict the probability of occurrence 

for Sebastes flavidus (Table 7).   

Table 7:  Summary of the accuracy of the generalized linear models (GLMs) for S. flavidus. 

Block Adjusted D2 
% Correctly 
Predicted 

% Errors of 
Omission 

% Errors of 
Commission 

Area 1 0.34 85 4 11 
Area 2 0.32 80 3 17 
Area 3 0.08 44 45 12 
Area 4 0.19 72 5 23 
Area 5 0.26 76 12 12 
Area 6 0.37 97 0 3 
Mean ± sd 0.26 ± 0.11 76 ± 17.8 11.5 ± 16.9 13 ± 6.7 
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For S. flavidus, Area 6 provided the most accurate predictions.  The adjusted D2 value for 

this model is 0.37.  In addition, it accurately predicted the probability of occurrence for 97% of 

the test points.  No errors of omission occurred and only 3% of the absence test points fell into 

areas of high probability and caused errors of commission (Table 8).    

 

Table 8:  Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 6 to predict the probability of finding S. flavidus throughout the block (n = 
76). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 0 15 15 
Absent 59 2 61 
Total 59 17 76 

   

Fine scale slope position and bathymetry were found to be significant in the GLM used to 

predict the probability of occurrence of S. flavidus in Area 6.  Bathymetry had a greater effect on 

the model with a p-value of 0.000 but fine scale slope position was still significant with a p-value 

of 0.022 (Table 9). 

 

Table 9:  Summary of the probability results from the GLM performed on Area 6 to predict the 
probability of finding S. flavidus throughout the block. 
Coefficients: Estimate Std. Error z-value Pr(>|z|)  
(Intercept) 7.254 3.081 2.354 0.019 * 
FS Slope Position 0.642 0.280 2.294 0.022 * 
Bathymetry 0.135 0.038 3.527 0.000 *** 

 

 From the histograms outputted for both variables used in the model, it is clear why 

bathymetry was found to be significant.  In the bathymetry distribution histogram, most of the 

presence points were found in depths between 65 and 85m with large spikes in density occurring 

at 80m and 70m.  On the other hand, the histogram for the fine scale slope position variable 

shows that there is a fairly even distribution of fish density within all the categories while most 

of the absent points are found in the slope position values between 0 and 2 (Figure 11).     
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Figure 11:  Histograms for each of the variables used in the GLM to predict the probability of 
occurrence of S. flavidus in Area 6.  The densities of the presence and absence of S. flavidus are 
compared across the values of the predictor rasters.  
 

The GLM formula for S. flavidus in Area 6 is: 

7.254 + 0.642(FS Slope Position) + 0.135(Bathymetry) 

  

This GLM predicts that a high percentage (79%) of the area within Area 6 is unlikely to 

contain S. flavidus.  It predicts that only 9% of the total block has a greater than 60% probability 

of containing S. flavidus (Table 10, Figure 12).   

 
Table 10:  Summary of the probability results from the GLM performed on Area 6 to predict the 
probability of finding S. flavidus throughout the block. 
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 6 
0.0-0.1 12836097 12.836 64% 
0.11-0.2 987687 0.988 5% 
0.21-0.3 807741 0.808 4% 
0.31-0.4 1199250 1.199 6% 
0.41-0.5 1379097 1.379 7% 
0.51-0.6 937521 0.938 5% 
0.61-0.7 718776 0.719 4% 
0.71-0.8 398331 0.398 2% 
0.81-0.9 419985 0.420 2% 
0.91-1.0 187515 0.188 1% 
 



 32

 
Figure 12:  Area 6 GLM results for S. flavidus (yellowtail rockfish).  Warmer colors indicate a 
high predicted probability of S. flavidus occurrence, while cooler colors indicate low 
probabilities.  Yellow dots signify locations where S. flavidus were observed and the red dots 
indicate locations where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 
10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 
2005.) 
 

Unlike Area 6, the GLM for Area 3 did not accurately predict the presence/absence of a 

very high percentage of the evaluation points.  This model has a very low adjusted D2 value of 

0.08.  In addition, it only accurately predicted the probability of occurrence for 44% of the 

evaluation points.  Errors of omission were made 45% of the time while errors of commission 

were made 12% of the time.  Therefore, this model tended to predict low probability for areas 

where S. flavidus were observed during the video transects (Table 11).  
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Table 11:  Contingency table of the data used to determine the probability accuracy from the 
GLM performed in Area 6 to predict the probability of finding S. flavidus throughout the block 
(n = 271).  

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 121 67 188 
Absent 51 32 83 
Total 172 99 271 

 

Bathymetry, fine scale slope position, and aspect were the three variables found 

significant in the GLM for S. flavidus in Area 3.  Bathymetry was the most significant with a p-

value of <0.000 followed by the fine scale slope position (p=0.026) and then aspect (p=0.037) 

(Table 12).  

 

Table 12:  Summary of the predictor variables used in the GLM performed on Area 3 to predict 
the probability of finding S. flavidus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 3.230 0.807 4.000 6.33E-5 *** 
Bathymetry 0.034 0.006 5.597 2.18E-8 *** 
FS Slope Position -0.226 0.102 -2.226 0.026 * 
Aspect 0.003 0.001 2.083 0.037 * 

 

 The low levels of accuracy for this model can be explained by the histograms outputted 

for each of the variables. All of the presence points for both bathymetry and aspect had a fairly 

even distribution with points falling into every value of each variable.  Although there were 

spikes of high density at certain values within the fine scale slope position raster, these spikes do 

not appear to be significantly different than those that occurred with the absence points (Figure 

13).   
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Figure 13:  Histograms for each of the variables used in the GLM to predict the probability of 
occurrence of S. flavidus in Area 3.  The densities of the presence and absence of S. flavidus are 
compared across the values of the predictor rasters.  
 

The GLM formula for S. flavidus in Area 3 is: 

3.230 + 0.034(Bathymetry) -0.226(FS Slope Position) + 0.003 (Aspect) 

  

The percentage of Area 3 that fell into each of the probability ranges was fairly similar.  

The GLM only predicted that 31% of the block had a greater than 60% chance of containing S. 

flavidus and 38% were unlikely to contain S. flavidus (Table 13, Figure 14).   

 

 



 35

Table 13:  Summary of the probability results from the GLM performed on Area 3 to predict the 
probability of finding Sebastes flavidus throughout the block.     
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 3 
0.0-0.1 779193 0.779 3% 
0.11-0.2 1344339 1.344 6% 
0.21-0.3 3716712 3.717 16% 
0.31-0.4 3462363 3.462 15% 
0.41-0.5 3391866 3.392 15% 
0.51-0.6 3610170 3.610 16% 
0.61-0.7 3641526 3.642 16% 
0.71-0.8 2726550 2.727 12% 
0.81-0.9 585135 0.585 3% 
0.91-1.0 855 0.001 0% 

 

 
Figure 14:  Area 3 GLM results for S. flavidus (yellowtail rockfish).  Warmer colors indicate a 
high predicted probability of S. flavidus occurrence, while cooler colors indicate low 
probabilities.  Yellow dots signify locations where S. flavidus were observed and the red dots 
indicate locations where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 
10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 
2005.) 
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 When all of the models were combined together for S. flavidus across the entire site, it is 

obvious that different predictions were made in each of the blocks and a seamless model cannot 

be achieved for all of Cordell Bank.  Even in areas where two blocks slightly overlap, there are 

distinguishable differences in the types of habitat that are found to be the most suitable.  This is 

most obvious between Areas 1 and 3.  The majority of Area 1 contains habitat that has a >90% 

probability of occurrence for S. flavidus while Area 3 only contains a very insignificant amount 

of habitat that has a probability of occurrence between 0.91 and 1.0.  When the probability 

rasters for these two areas are placed next to each other, there is an observable seam.  The rest of 

the areas have models that are slightly different but the differences are less apparent (Figure 15). 

 
Figure 15:  A combination of the probability of occurrence rasters for S. flavidus across the entire 
site.  Warmer colors indicate a high predicted probability of S. flavidus occurrence, while cooler 
colors indicate low probabilities. Yellow dots signify locations where S. flavidus were observed 
and the red dots indicate locations where no fish were present.  (Image resolution:  3m; 
coordinate System:  UTM 10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam 
survey completed fall 2005.) 
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Sebastes rosaceus (Rosy Rockfish)  

The GLMs that were ran on the presence and absence points for S. rosaceus had 

relatively high levels of performance.  The average adjusted D2 value for these models was 0.45.  

The highest level of performance was in Area 4 with an adjusted D2 value equal to 0.66.  The 

generalized linear model for Area 3 had the lowest level of performance (adjusted D2 = 0.08). 

 Along with having high levels of performance, the GLMs for S. rosaceus proved to be 

fairly accurate.  They correctly predicted the probability of occurrence 81% of the time on 

average.  Area 2 and Area 6 had the highest levels of accuracy with 91% and 92% correct 

predictions, respectively.  Area 3 had the lowest level of accuracy with only 63% of the test 

points being predicted correctly.  Errors of omission and errors of commission occurred about 

the same percentage of the time with errors of omission occurring slightly more on average.  

Therefore, the models for S. rosaceus tend to predict low levels of probability where fish are 

actually present.  This case is most apparent in area three where 25% of the presence points from 

the test transects fell in areas with low probabilities of occurrence while only 12% of the absence 

points fell in areas with high probabilities of occurrence (Table 14). 

 

Table 14:  Summary of the accuracy of the generalized linear models (GLMs) for S. rosaceus. 

Block Adjusted D2 
% Correctly 
Predicted 

% Errors of 
Omission 

% Errors of 
Commission 

Area 1 0.52 79 5 16 
Area 2 0.55 91 7 2 
Area 3 0.08 63 25 12 
Area 4 0.66 80 7 13 
Area 5 0.38 81 9 10 
Area 6 0.53 92 7 1 
Mean ± sd 0.45 ± 0.20 81 ± 10.5 10 ± 7.5  9 ± 6.1 

 

Although most of the GLMs for S. rosaceus were fairly accurate in predicting 

distribution, Area 2 was one of the most accurate with a high adjusted D2 value of 0.55 and 91% 

of the probability of occurrence for the evaluation points being predicted correctly.  Errors of 

omission were made 7% of the time and errors of commission were made 2% of the time (Table 

15).    
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Table 15:  Contingency table of the data used to determine the probability accuracy from the 
GLM performed in Area 2 to predict the probability of finding Sebastes rosaceus throughout the 
block (n = 184). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 12 21 33 
Absent 146 5 151 
Total 158 26 184 

   

Only two variables were found to be significant in the GLM used to predict the 

probability of occurrence of S. rosaceus in Area 2.  Bathymetry had the greatest effect with a p-

value of 0.006 but aspect was still significant with a p-value of 0.026 (Table 16).    

 

Table 16:  Summary of the predictor variables used in the GLM performed on Area 2 to predict 
the probability of finding S. rosaceus throughout the block. 
Coefficients: Estimate Std. Error z-value Pr(>|z|)  
(Intercept) 17.815 6.039 2.950 0.003 ** 
Bathymetry 0.201 0.073 2.768 0.006 ** 
Aspect -0.006 0.003 -2.228 0.026 * 

 

 The bathymetry distribution histogram shows that S. rosaceus are found in depths 

between 75 and 95m with the greatest densities occurring at 80m.  In addition, they are most 

commonly found on habitat that has an aspect around 50˚ (Figure 16).       
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Figure 16:  Histograms for each of the variables used in the GLM for Area 2.  The densities of 
the presence and absence of S. rosaceus are compared across the values of the predictor rasters.  
 

The GLM formula for S. rosaceus in Area 2 is: 

17.815 + 0.201(Bathymetry) – 0.006(Aspect) 

  

The majority of the output from this GLM fell into the 0.0 – 0.1 range of probabilities 

(80%).  Only 8% of the habitat in Area 2 had a high probability of occurrence for S. rosaceus 

(Table 17, Figure 17).   

 

Table 17:  Summary of the probability results from the GLM performed on Area 2 to predict the 
probability of finding S. rosaceus throughout the block.     
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 2 
0.0-0.1 15361218 15.36122 80% 
0.11-0.2 671490 0.67149 3% 
0.21-0.3 445338 0.445338 2% 
0.31-0.4 362898 0.362898 2% 
0.41-0.5 357768 0.357768 2% 
0.51-0.6 361683 0.361683 2% 
0.61-0.7 378315 0.378315 2% 
0.71-0.8 420390 0.42039 2% 
0.81-0.9 440073 0.440073 2% 
0.91-1.0 398349 0.398349 2% 
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Figure 17:  Area 2 GLM results for S. rosaceus (rosy rockfish).  Warmer colors indicate a high 
predicted probability of S. rosaceus occurrence, while cooler colors indicate low probabilities.  
Pink dots signify locations where S. rosaceus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
  

As with S. flavidus, the GLM performed in Area 3 for S. rosaceus came up with poor 

results.  This model has an adjusted D2 value of 0.08 meaning that 92% of the residual deviance 

from this model was not explained by the model.  It accurately predicted the probability of 

occurrence for S. rosaceus in Area 3 63% of the time.  Errors of omission occurred for 25% of 

the evaluation points and errors or commission occurred for 12% of the evaluation points.  

Therefore, this model tended to predict low probabilities of occurrence in areas where S. 

rosaceus were observed during the video transects (Table 18).  

Table 18:  Contingency table of the data used to determine the probability accuracy from the 
GLM performed in Area 2 to predict the probability of finding S. rosaceus throughout the block 
(n = 179). 
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# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 45 57 102 
Absent 56 21 77 
Total 101 78 179 

 

The generalized linear model used to predict the probability of occurrence for S. rosaceus 

in Area 3, only found bathymetry and aspect to be significant with p-values of 0.000 and 0.042, 

respectively (Table 19). 

 

Table 19:  Summary of the predictor variables used in the GLM performed on Area 3 to predict 
the probability of finding S. rosaceus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 2.094 0.746 2.806 0.005 ** 
Aspect 0.003 0.002 2.037 0.042 * 
Bathymetry 0.033 0.009 3.770 0.000 *** 

 

 The distributions of the presence points for S. rosaceus are fairly even over the values 

from both predictor rasters.  There are no significant spikes in density for any of the values from 

either variable (Figure 18). 

 
Figure 18:  Histograms for each of the variables used in the GLM to predict the probability of 
occurrence of S. rosaceus in Area 2.  The densities of the presence and absence of S. rosaceus 
are compared across the values of the predictor rasters.  
 

The GLM formula for S. rosaceus in Area 3 is: 
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2.094 + 0.003(Aspect) + 0.033(Bathymetry) 

 The results from the GLM indicate that 28% of Area 3 has a high probability of 

containing S. rosaceus and that 43% of the site has a small probability of being suitable habitat 

for S. rosaceus (Table 20, Figure 19).   

 

Table 20:  Summary of the probability results from the GLM performed on Area 3 to predict the 
probability of finding S. rosaceus throughout the block.    
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 3 
0.0-0.1 695043 0.695 3% 
0.11-0.2 2026107 2.026 9% 
0.21-0.3 3816450 3.816 17% 
0.31-0.4 3272733 3.272 14% 
0.41-0.5 3223674 3.223 14% 
0.51-0.6 3634371 3.634 16% 
0.61-0.7 3533031 3.533 15% 
0.71-0.8 2814831 2.814 12% 
0.81-0.9 242469 0.242 1% 
0.91-1.0 0 0 0% 
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Figure 19:  Area 3 GLM results for S. rosaceus (rosy rockfish).  Warmer colors indicate a high 
predicted probability of S. rosaceus occurrence, while cooler colors indicate low probabilities.  
Pink dots signify locations where S. rosaceus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
 

 When all of the GLM prediction grids are combined across the entire site, there are some 

obvious discrepancies between the predictions in the separate blocks but the majority of the areas 

seem to match up fairly well.  The main discrepancies occur between areas 1 and 3.  There are 

obvious seams where these two areas meet.  However, the rest of the blocks seem to match up 

fairly well, especially areas 2, 4, and 6 on the east side of the bank.  These three prediction grids 

can be combined to create an almost seamless prediction grid (Figure 20).     
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Figure 20:  A combination of the probability of occurrence rasters for Sebastes rosaceus across 
the entire site.  Warmer colors indicate a high predicted probability of S. rosaceus occurrence, 
while cooler colors indicate low probabilities. Pink dots signify locations where S. rosaceus were 
observed and the red dots indicate locations where no fish were present.  (Image resolution:  3m; 
coordinate System:  UTM 10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam 
survey completed fall 2005.) 
    

 

Sebastes elongatus (Greenstriped Rockfish) 

The distribution of S. elongatus proved to be relatively difficult to model.  The average 

adjusted D2 value for this species was 0.25.  This is a relatively low average and means that 

about 75% of the residual deviance could not be explained by these models.  Therefore, the GLM 

for either of the areas where S. elongatus were present did not have very high levels of 

performance. 
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 The average percentage of the test points that were correctly predicted was 62%.  Only 

45% of the points were correctly predicted in Area 1 while 78% were correctly predicted in Area 

2.  Each of these areas experienced different patterns in their errors of omission versus their 

errors of commission.  In Area 1, 6% of the presence points fell into areas of low probability of 

occurrence while 48% of the absence points fell into areas of high probability of occurrence.  On 

the other hand, in Area 2, 22% of the presence points fell into areas of low probability of 

occurrence and none of the absence points fell in areas of high probability of occurrence.  These 

results show that the GLM for S. elongatus in Area 1 tended to over-predict the probability of 

occurrence while the GLM for S. elongatus in Area 2 tended to under-predict the probability of 

occurrence (Table 21). 

 

Table 21:  Summary of the accuracy of the generalized linear models (GLMs) for S. elongatus.  

Block 
Adjusted 
D2 

% Correctly 
Predicted 

% Errors of 
Omission 

% Errors of 
Commission 

Area 1 0.25 45 6 48 
Area 2 0.25 78 22 0 
Mean ± sd 0.25 ± 0 62 ± 23.3 14 ± 11.3  24 ± 33.9 

  

Neither GLM for S. elongatus was very effective at predicting the probability of 

occurrence for this species but the model for Area 1 was slightly better than that for Area 2.  The 

adjusted D2 value calculated for this GLM is 0.25.  This model was only 45% accurate in 

predicting the probability of occurrence of S. elongatus.  Errors of omission occurred for 6% of 

the test points while 48% errors of commission occurred (Table 22).    

 

Table 22:  Contingency table of the data used to determine the probability accuracy from the 
GLM performed in Area 1 to predict the probability of finding S. elongatus throughout the block 
(n = 93). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 6 6 12 
Absent 36 45 81 
Total 42 51 93 

      

The GLM used to predict the probability of occurrence of S. elongatus within Area 1, 

found the following variables to be significant:  rugosity (p=0.016), broad scale slope position 

(p=0.041), bathymetry (p=0.029), and substrate type from the acoustic backscatter maximum 
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likelihood classification (MLC; p=0.006; Table 23).  This was the only model where the MLC of 

the acoustic backscatter was found to be a significant predictor.  

  

Table 23:  Summary of the predictor variables used in the GLM performed on Area 1 to predict 
the probability of finding S. elongatus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 69.858 43.224 1.616 0.016 ** 
Rugosity -80.207 44.797 1.548 0.050 * 
BS Slope Position -0.962 0.471 -2.044 0.041 * 
Bathymetry -0.040 0.018 -2.179 0.029 * 
MLC 1.942 0.701 2.772 0.006 ** 

 

 The histograms from the GLM used to predict the probability of occurrence of S. 

elongatus in Area 1 display the distribution of the presence/absence points over the values of the 

predictor rasters.  There are fairly even distributions within bathymetry and broad scale slope 

position.  On the other hand, S. elongatus is found on a very narrow range of the values from the 

rugosity and the MLC.  They were only present in the very low rugosity values and the majority 

of the fish were found on mixed substrate from the MLC (Figure 21).    
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Figure 21:  Histograms for each of the variables used in the GLM for Area 1.  The densities of 
the presence and absence of Sebastes elongatus are compared across the values of the predictor 
rasters.  
  

The GLM formula for S. elongatus in Area 3 is:    

69.858 – 80.207(rugosity) – 0.962(BS Slope Position) – 0.040(Bathymetry) + 1.942(MLC) 

 

This GLM predicted that 62% of the habitat within Area 1 had a less than 40% chance of 

containing S. elongatus.  Only 15% of the area is likely to have S. elongatus present (Table 24, 

Figure 22).   
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Table 24:  Summary of the probability results from the GLM performed on Area 1 to predict the 
probability of finding S. elongatus throughout the block.    
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 1 
0.0-0.1 3771036 3.771 19% 
0.11-0.2 3586707 3.587 18% 
0.21-0.3 2156652 2.157 11% 
0.31-0.4 2745378 2.745 14% 
0.41-0.5 2756871 2.757 14% 
0.51-0.6 1643607 1.644 8% 
0.61-0.7 1133703 1.134 6% 
0.71-0.8 853605 0.854 4% 
0.81-0.9 560754 0.561 3% 
0.91-1.0 429156 0.429 2% 

 

 
Figure 22:  Area 1 GLM results for S. elongatus (greenstriped rockfish).  Warmer colors indicate 
a high predicted probability of S. elongatus occurrence, while cooler colors indicate low 
probabilities.  Green dots signify locations where S. elongatus were observed and the red dots 
indicate locations where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 
10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 
2005.) 
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 Although the GLM for S. elongatus in Area 1 was not very effective in predicting the 

probability of occurrence, the model for Area 2 was even less effective.  The adjusted D2 value 

calculated for this GLM is 0.25.  None of the points for this test fell into an area that had a high 

probability of occurrence for S. elongatus.  All of the test points for presence were found in an 

area of low probability, making the model have a 22% error of omission.  No errors of 

commission occurred.  This model had an overall accuracy of 78% (Table 25). 

 

Table 25:  Contingency table of the data used to determine the probability accuracy from the 
GLM performed in Area 2 to predict the probability of finding S. elongatus throughout the block 
(n = 166). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 37 0 37 
Absent 129 0 129 
Total 166 0 166 

  

The following variables were used in the GLM to predict the probability of occurrence of 

S. elongatus in Area 2:  bathymetry (p<0.000) and broad scale slope position (p=0.000) (Table 

26).   

 

Table 26:  Summary of the predictor variables used in the GLM performed on Area 2 to predict 
the probability of finding S. elongatus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -52.868 24.729 -2.138 0.033 * 
Bathymetry -0.353 0.079 -4.467 7.94E-6 *** 
BS Slope Position -2.262 0.619 -3.653 0.000 ** 

 

 The bathymetry distribution histogram from this GLM has its largest spike in density of 

S. elongatus at 140m of depth.  However, the broad scale slope position distribution shows that 

there is an almost even distribution in density of S. elongatus across all values of this predictor 

(Figure 23).     
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Figure 23:  Histograms for each of the variables used in the GLM to predict the probability of 
occurrence of S. elongatus in Area 2.  The densities of the presence and absence of S. elongatus 
are compared across the values of the predictor rasters.  
 

The GLM formula for S. elongatus in Area 3 is: 

-52.868 – 0.353(bathymetry) – 2.262(BS slope position) 

 

 This GLM predicted that it is unlikely to find S. elongatus in 72% of the habitat in Area 2 

and that only 20% of the area was likely to contain S. elongatus (Table 27, Figure 24). 

 

Table 27:  Summary of the probability results from the GLM performed on Area 2 to predict the 
probability of finding S. elongatus throughout the block.    
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 2 
0.0-0.1 11813526 11.813 59% 
0.11-0.2 1145160 1.145 6% 
0.21-0.3 756153 0.756 4% 
0.31-0.4 574722 0.570 3% 
0.41-0.5 497700 0.497 2% 
0.51-0.6 502659 0.502 3% 
0.61-0.7 523719 0.523 3% 
0.71-0.8 619362 0.619 3% 
0.81-0.9 864693 0.864 4% 
0.91-1.0 1908945 1.908 10% 
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Figure 24:  Area 2 GLM results for S. elongatus (greenstriped rockfish).  Warmer colors indicate 
a high predicted probability of S. elongatus occurrence, while cooler colors indicate low 
probabilities.  Green dots signify locations where S. elongatus were observed and the red dots 
indicate locations where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 
10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 
2005.) 
 

 Since there were not enough presence points in any of the other blocks for S. elongatus, 

only GLMs were run in Areas 1 and 2.  When displayed next to each other, there are obvious 

discrepancies between the different models.  The GLM for Area 1 has very little pattern and 

appears mottled in its predictions while the GLM for Area 2 looks similar to a contour map 

(Figure 25).  
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Figure 25:  A combination of the probability of occurrence rasters for Sebastes elongatus across 
the entire site.  Warmer colors indicate a high predicted probability of S. elongatus occurrence, 
while cooler colors indicate low probabilities. (Image resolution:  3m; coordinate System:  UTM 
10N WGS 84; NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 
2005.)  
 

3.6 Submersible Video Data Analysis  

 The results from the video analysis showed that the fish species chosen in this study are 

associated with certain depth ranges and substrate types.  S. flavidus were found in a depth range 

from 50m to 140m.  The majority of the yellowtail rockfish were found between 70m and 100m 

depth (Figure 26).  The depth range for S. rosaceus was 50-130m, with the majority of the fish 

found between 50m and 70m depths (Figure 27).    Sebastes elongatus were found slightly 

deeper in a depth range from 100m to 200m with some sightings around 255m (Figure 28).   
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Figure 26:  Density of S. flavidus observed at each depth from 35m to 285m on Cordell Bank, 
California (n = 1303). 
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Figure 27:  Density of S. rosaceus observed at each depth from 35m to 285m on Cordell Bank, 
California (n = 998)   
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Figure 28:  Density of Sebastes elongatus observed at each depth from 35m to 285m on Cordell 
Bank, California (n = 100). 
 

 The density of S. flavidus compared between the training transects and the evaluation 

transects followed similar patterns.  The majority of the fish observed were found in areas of 

rock (r) or boulder (b), the higher relief habitats.  Few fish were observed in soft sediment such 

as mud (m) or sand (s) (Figures 29 and 30).     
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Figure 29:  Density of S. flavidus observed over each substrate type classified from the video 
data within the training transects on Cordell Bank, California (Pirtle, 2005).  For habitat codes, 
refer to Table 2 (n = 906)  
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Figure 30:  Density of S. flavidus observed over each substrate type classified from the video 
data within the evaluation transects on Cordell Bank, California (Pirtle, 2005).  For habitat codes, 
refer to Table 2 (n = 397).  
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 The density of S. rosaceus followed similar distribution patterns between the training and 

evaluation transects.  Like S. flavidus, S. rosaceus are mainly found in high-relief habitats such 

as rock (r) and boulder (b).  Some of the fish in the training transects were found in mud habitats 

but none of the fish were observed over the muddy substrates throughout the evaluation transects 

(Figures 31 and 32).   
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Figure 31:  Density of S. rosaceus observed over each substrate type classified from the video 
data within the training transects on Cordell Bank, California (Pirtle, 2005).  For habitat codes, 
refer to Table 2 (n = 488).  
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Figure 32:  Density of S. rosaceus observed over each substrate type classified from the video 
data within the evaluation transects on Cordell Bank, California (Pirtle, 2005).  For habitat codes, 
refer to Table 2 (n = 510).  
 

 The majority of S. elongatus were found over muddy substrates (m).  Only a few fish 

were found over cobble (c) or boulder substrates in both the training and evaluation transects 

(Figures 33 and 34). 
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Figure 33:  Density of S. elongatus observed over each substrate type classified from the video 
data within the training transects on Cordell Bank, California (Pirtle, 2005).  For habitat codes, 
refer to Table 2 (n = 50). 
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Figure 34:  Density of S. elongatus observed over each substrate type classified from the video 
data within the evaluation transects on Cordell Bank, California (Pirtle, 2005).  For habitat codes, 
refer to Table 2 (n = 50). 
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3.7 Comparison of Video Analysis versus GLM Predictions 

 The comparison of the predictions from the video analysis versus the predictions from the 

GLMs, showed that the GLMs were, on average, better at predicting the abundance of Sebastes 

flavidus and S. rosaceus in the eight representative transects chosen for this analysis.  The 

percent error between the predicted and actual abundance of S. flavidus was 16% from the GLM 

predictions and 68% from the video predictions (Table 28). 

 

Table 28:  The predicted abundance of S. flavidus using results from the video analysis and 
results from the GLM analyses compared to the actual number of S. flavidus observed in each 
corresponding transect.         

Transect 

# of S. flavidus 
predicted using Video 
Analysis 

# of S. flavidus predicted 
from using GLMs  

Actual Number of S. flavidus 
observed in Transect 

1 45 89 76 
5 60 23 9 
7 3 2 1 
11 63 21 13 
15 20 0 0 
21 78 56 64 
23 23 18 11 
32 10 0 6 
Total 302 209 180 
Percent 
Error 68% 16% 0% 

 

 The percent error between the number of S. rosaceus predicted by the GLMs in each 

transect and the actual number observed was 13% while the percent error between the number of 

S. rosaceus predicted by the video analysis and the actual number observed was 44%.  Therefore, 

the GLMs were more accurate at predicting the abundance of S. rosaceus (Table 29).  
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Table 29:  The predicted abundance of S. rosaceus using results from the video analysis and 
results from the GLM analyses compared to the actual number of S. rosaceus observed in each 
corresponding transect.   

Transect 

# of S. rosaceus 
predicted using Video 
Analysis 

# of S. rosaceus predicted 
from using GLMs  

Actual Number of S. 
rosaceus observed in 
Transect 

1 19 27 22 
5 64 33 28 
7 6 4 0 
11 25 34 38 
15 5 0 0 
21 28 23 17 
23 11 9 10 
32 8 0 0 
Total 166 130 115 
Percent 
Error 44% 13% 0% 

 

 The percent error from the video analysis and GLM predictions were the same for S. 

elongatus.  Both predicted that there would be 19 fish in the training transects when there were 

actually 24.  Therefore, the percent error for both techniques was -21% (Table 30).     

       

Table 30:  The predicted abundance of S. elongatus using results from the video analysis and 
results from the GLM analyses compared to the actual number of S. elongatus observed in each 
corresponding transect.   

Transect 

# of S. elongatus 
predicted using Video 
Analysis 

# of S. elongatus predicted 
from using GLMs  

Actual Number of S. 
elongatus observed in 
Transect 

1 0 9 0 
5 0 0 0 
7 1 0 0 
11 0 0 0 
15 12 10 13 
21 0 0 0 
23 0 0 0 
32 6 0 11 
Total 19 19 24 
Percent 
Error -21% -21% 0% 
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3.8 Stock Assessments  

 The stock sizes calculated for each species of fish showed that S. flavidus has the highest 

predicted stock of the three species modeled on Cordell Bank.  The total stock estimation for S. 

flavidus is 469,447 fish with the greatest number of fish in Area 1 (270,895 +/- 100,955).  The 

stock size estimation for S. rosaceus across the whole site was 295,003 (+/- 65,139) with its 

highest estimation in Area 1 of 110,538.  Compared to the other two species, the predicted stock 

size of S. elongatus was relatively small.  Only 37,452 (+/- 15,906) individuals of S. elongatus 

are predicted to reside on Cordell Bank, California (Table 31, Figure 35). 

 

Table 31:  Summary table of the stock assessment predictions for S. flavidus, S. rosaceus, and S. 
elongatus on Cordell Bank, California.  Errors were calculated by multiplying the percentage of 
inaccurate results for each species of fish in each block by the total stock.           
Block # of S. flavidus # of S. rosaceus # of S. elongatus 
Area 1 270,895 ± 40,634 110,538 ± 23,213 23,231 ± 12,777 
Area 2 53,894 ± 10,779 8,790 ± 791 14,221 ± 3,129 
Area 3 47,139 ± 26,398 57,097 ± 21,126 n/a 
Area 4 38,851 ± 10,878 48,978 ± 9,796 n/a 
Area 5 50,025 ± 12,006 42,231 ± 8,024 n/a 
Area 6 8,642 ±  259 27,368 ± 2,189 n/a 
Total  469,447 ±  100,955 295,003 ± 65,139 37,452 ± 15,906 
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Figure 35:  Total stock calculated for S. flavidus, S. rosaceus, and S. elongatus within each block 
of Cordell Bank, California.  Error bars were calculated by multiplying the percentage of 
inaccurate results for each species of fish in each block by the total stock. 
 

4 DISCUSSION 

 One of the most difficult aspects of fishery management is determining the current stock 

sizes for different species of fish.  Since most stock assessments require the use of bottom trawls, 

accurate assessments for species that live in rocky habitats, such as rockfish, are often precluded 

from this technique.  Since many species of rockfish are closely associated with certain habitat 

parameters, it is likely that stock data can be acquired through the use of habitat data, such as 

seafloor bathymetry and its derived products. This study attempted to determine the stock sizes 

of three different species of rockfish (S. flavidus, S. rosaceus, and S. elongatus) on Cordell Bank, 

California.  Since, in most cases, habitat could be used to model the abundance and distribution 

of rockfish with some degree of accuracy, the null hypothesis was rejected.   

  

4.1 Multibeam Slope Analysis  

 Since the categorization of the slope grid combined the majority of the values into one 

class (“sloping”), the classified slope grid did not come out significant in any models.  Therefore, 
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the raw slope values were used as inputs into the GLMs rather than the categorized values.  

However, even the raw slope values did not prove to be very good predictors of rockfish 

distribution and abundance.  It was only found significant in one of the 14 models run on the 

different species. 

 Although slope did not work well in any of the models from this study, it should not be 

disregarded as unimportant to rockfish habitat.  Rockfish may not be directly related to slope, but 

they could be related to some derivative of slope such as the standard deviation of slope or 

(slope)2.  These options should be explored before classifying slope as an ineffective predictor of 

rockfish distribution and abundance.  

 

4.2 Multibeam Substrate Analysis 

 As with slope, the binary substrate grid from the multibeam did not come out as 

significant in any models.  However, the raw rugosity values were significant to six of the 14 

models.  Rugosity, the bumpiness of the terrain, appears to be a good variable to delineate 

between the different types of rocky substrate.  From looking at the histograms displaying 

rugosity, Sebastes flavidus and S. rosaceus are most commonly present in areas where the 

rugosity values are between 1.05 and 1.2.  This type of habitat is rocky but not overly complex.  

These species especially do not seem to prefer the higher rugosity values where there are large-

scale changes in the terrain. 

 

4.3 Multibeam Topographic Position Index (TPI) Analysis     

    The slope position grids derived from the topographic position (TPI) analysis proved to 

be significant predictors of rockfish abundance and distribution in the majority of the models. S. 

flavidus and S. rosaceus were mostly found between the grid values of 3 (middle slope) and 5 

(peak/ridge).  These species tend to prefer the habitats that are of greater elevation than the 

surrounding environment.  They were rarely associated with crevices and valleys.   

 On the other hand, S. elongatus were not significantly associated with any of the values 

from the slope position grids.  Even when these variables were found to be significant in the 

models predicting the probability of occurrence of S. elongatus, the presence of this species was 

evenly distributed over all values.  Therefore, the GLMs for S. elongatus could be more effective 

at predicting distribution if the slope position variables were removed.  Even though they were 
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found to be significant, the histograms show that they may be hindering the models rather than 

helping increase their predictive power.    

 

4.4 Acoustic Backscatter Analysis and Habitat Classification        

 Although the methods used in this analysis have proven to be successful at classifying the 

habitat of sites based on the acoustic backscatter, the final product from this type of habitat 

classification could not be used to predict the abundance and distribution of rockfish species in 

this study.  The final product was a vector dataset and the GLMs can only accept raster data.  

However, it would be interesting to develop another method to associate rockfish with this 

habitat classification to determine how effective it would be at predicting their abundance and 

distribution compared to the other methods explored in this study. 

 Even though the final product from this analysis was not used for the rockfish/habitat 

associations, one of the intermediate products, the maximum likelihood classification (MLC), 

was the most significant factor in one of the models for S. elongatus.  Since the sidescan mosaic 

could not be utilized due to processing limitations, the MLC provided the next best alternative 

for differentiating between the low-relief habitats.  However, if more processing power could be 

achieved, it would be useful to use some of the other intermediate products such as the 

homogeneity and entropy classifications because they would pick up on the fine scale variations 

in sediment type.           

 

4.5 Rockfish/Habitat Associations Analysis Using GLMs 

The habitat parameters used were:  depth, slope, rugosity, topographic position index 

(TPI), aspect, and seafloor substrate.  In all the GLMs created to determine the probability of 

occurrence for each individual species, depth was a significant factor.  Depth was the only 

variable that was used in every model, regardless of species type, and it was often the most 

significant factor.  As shown through the analysis of the video data, S. flavidus, S. rosaceus, and 

S. elongatus are most common in a fairly narrow depth range.  

Although depth is a significant factor in all the models, it cannot accurately predict the 

distribution of rockfish without other habitat parameters such as rugosity.  Depth does not take 

into account the characteristics of the seafloor and, therefore, the GLMs require at least one other 

habitat parameter to predict the probability of occurrence of rockfish.  For example, S. flavidus 
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may prefer to remain in depths between 55m and 135m but they also prefer habitat with an 

adequate amount of relief.  Both of these parameters have to be represented in the model in order 

to create an accurate distribution map of this species. 

After depth, the slope position and rugosity rasters appeared as significant in the most 

models.  Slope, aspect, and substrate were significant in a few models but not as often as the 

other variables.  Although the maximum likelihood classification (MLC) of the acoustic 

backscatter mosaic was included in every model, it was only found to be significant for one of 

the models for S. elongatus.  Since S. elongatus are commonly found to be associated with low-

relief, muddy habitats, it is logical that they would find those predictors that differentiate 

between different substrates to be more significant. 

The results from these models show that the distribution of S. rosaceus appears to be the 

easiest to model.  The GLMs for S. rosaceus had higher levels of performance and experienced 

greater accuracies.  Although the adjusted D2 value for S. flavidus were relatively low compared 

to S. rosaceus, the models still were fairly accurate when tested with the presence and absence 

points from the evaluation transects.  On the other hand, the GLMs for S. elongatus did not seem 

to perform very well.  Although Area 2 had a high accuracy, that is most likely due to the large 

amount of area within the block that was assigned very low probabilities of occurrence.  This 

caused the absence points, which there were more of, to fall into areas of low probabilities, 

making the model seem accurate.   

The reason that the GLMs for S. rosaceus and S. flavidus were more accurate is most 

likely due to the fact that these species are found in rocky habitats as opposed to S. elongatus, 

which are found in muddy habitats.  With the variables that were able to be included in the 

models (depth, rugosity, slope, aspect, TPI, and substrate) it is easier to differentiate between 

different rocky habitats than it is to differentiate between subtle differences in the mud habitat 

that could help to better model the preference of S. elongatus.  The acoustic backscatter mosaic 

would probably allow for stronger predictions of S. elongatus probabilities of occurrence but 

backscatter could not be included in the GLMs because there were too many differences in 

values and the models would crash due to limitations in computer processing power.   

Another potential cause of the poor models for S. elongatus could be the small amount of 

observations that occurred for this species.  The great inequality in presence versus absence 

points may have caused the inaccurate results.  In both areas, there were far more absence points 
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than there were presence points.  In order to decrease the inequality of presence versus absence 

points, the absence points could be sub-sampled to an amount not more than twice the presence 

points so that not all are being used in the models.  This would decrease the amount of absence 

points and still have representation over the areas where S. elongatus are not present.  Also, 

different methods could be applied to those fish that have very few presence points such as 

ordination techniques.  This method is based on reciprocal averaging of species and site scores 

and is better at dealing with data that has many absences or zeros (Guisan and Zimmerman, 

2000).  This type of analysis was not explored in this study.    

Since the rockfish/habitat associations analysis in this study could not be run on the entire 

site with the use of all the fish presence/absence points, the site had to be subdivided into 6 

separate parts.  This introduced some inconsistency in the results.  Areas that had a lot of fish 

points spread out over a greater number of habitat parameters seemed to make better predictions 

and allowed for the use of more habitat parameters in the models.  For example, Area 6 only had 

transects that were run in one corner of the block, leaving the majority of the area under-

represented.  Therefore, the model predicted that the fish would have higher probabilities of 

being found in that corner because there were no presence points away from there.  That doesn’t 

necessarily mean that the fish do not prefer habitat away from that corner but that is the way the 

model interpreted the data that was available.   

This study only explored the use of generalized linear models (GLMs) in order to 

determine the probability of occurrence of the rockfish species.  However, another type of model 

that could potentially provide more robust predictions is the generalized additive model (GAM).  

GAMs are similar to GLMs in that they can deal with data that is non-linear and has non-

constant variance (Guisan et al., 2002; Yee and Mitchell, 1991).  However, GLMs do not always 

have the ability to approximate the true regression surface; especially if the true curve is 

asymmetrical.  GLMs fit their regression surface to a curve that is symmetric and bell-shaped 

(Gaussian logit curve).  On the other hand, GAMs are more data-driven than model-driven and, 

therefore, allow for a variety of different curves to be modeled (Yee and Mitchell, 1991).  They 

are especially useful when binary data is used but can be applied to all the different types of data 

that GLMs are used for (Yee and Mitchell, 1991).  Since the data used in this study was binary 

(presence/absence) it is possible that GAMs could have created more accurate models.  

However, GAMs could not be tested in this study because they require the use of more memory 
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for their processes and limitations in current equipment did not allow for this option to be 

explored. 

Another technique that could be investigated would be including not just the rasters with 

raw values but also some function of those values.  For example, certain species of fish may not 

be directly related to raw slope values but could be directly related to the slope values squared.  

Therefore, it would be interesting to create a model that includes functions of values as well as 

the raw values to see if some of the functions are more significant in the model. 

In addition, new methods to determine the accuracy and fit of the models would be 

useful.  The exploration of more rigorous statistical tests is needed to make better comparisons 

between models.  For example, the use of a contingency table to determine the accuracy is 

sometimes misleading such as with S. elongatus in Area 2.  Since the majority of the site had low 

probability of occurrence for this species and the number of absence points was far greater than 

the number of presence points, the results showed that this model was 78% accurate.  Statistical 

tests that take into account these types of situations would allow for better evaluation of the 

predictions made by these models.      

Finally, although the type of model used in this study was developed and has been 

heavily explored in the terrestrial realm, there may need to be some alterations to the methods 

before applying them to the marine realm.  Different environmental processes occur in water 

than on land and these processes may need to be taken into account.  Also, most of the success in 

previous terrestrial studies has focused on the distribution of different types of vegetation, which 

are sessile organisms.  Fish are not sessile organisms, therefore, fine-tuning the models to take 

into account not just the habitat attributes that are directly beneath the presence/absence points 

but also those that are in very close proximity could help to improve the effectiveness of the 

GLMs by recognizing that fish do not remain in one spot.    

 

4.6 Submersible Video Data Analysis  

 The analysis performed on the rockfish from the submersible video data outlined some of 

the major patterns in the depth distribution and habitat associations of S. flavidus, S. rosaceus, 

and S. elongatus.  However, unlike the GLMs, the results from the video analyses cannot be 

extrapolated to encompass the whole site.  Only habitat where video data was collected can be 

defined if other imagery is not available such as maps produced from acoustic surveys to 
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associate the video classification with.  In addition, the process used to distinguish between the 

different types of habitats is fairly subjective.  For example, one person may define a certain type 

of habitat as cobble while someone else labels it as boulder.  Finally, a great amount of time has 

to be allotted to watching the videos and classifying the habitat compared to the amount of time 

it takes to run one of the analyses on the multibeam or acoustic backscatter data within GIS to 

differentiate between the different habitats.   

 

4.7 Comparison of Video Analysis versus GLM Predictions 

 The comparison between the video analyses versus the GLM predictions showed that, for 

this study, the GLMs were better at predicting the “stock” sizes of S. flavidus and S. rosaceus 

than the habitat characterization from the video analysis.  For S. flavidus, the percent error 

between the predicted and observed stock size was only 16% compared to a percent error of 68% 

from the video analysis predictions.  The percent error from the video analysis predictions of the 

stock sizes of S. rosaceus was better than for S. flavidus (44%) but it still was greater than the 

percent error from the GLM predictions (13%).  Therefore, the GLMs were more accurate at 

making predictions for these two species of fish that are often associated with rocky habitats. 

 On the other hand, there was no difference in the percent error between the video analysis 

and the GLM analysis for S. elongatus.  They both had a percent error of -21%.  However, the 

GLM analysis could only utilize 3 of the 8 test transects used in this comparison because no 

models existed under the other 5 transects.  Therefore, this may not be an accurate comparison 

because the percent error from the video analysis was for all 8 transects. 

 Based on these results, the use of GLMs seems to be more effective at predicting the 

stock of S. rosaceus and S. flavidus.  In addition to being more accurate, the GLM predictions 

can also be extrapolated over a greater area than the video data.  Video data alone cannot be used 

to classify habitat across the entire site because only the areas where there is video data can be 

classified using the techniques utilized in this study.  Also, the video analysis only took into 

account substrate type and it did not consider other factors such as depth.  Since depth was such 

an important predictor of species distribution in the GLMs, it can be assumed that the video 

analysis is not very effective because of the lack of depth data.  Therefore, for two of the species, 

the GLMs proved to be more effective and efficient.  In further studies, however, it would be 
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useful to come up with a statistical test to determine whether or not these differences in accuracy 

are significant between the two methods. 

 For S. elongatus, better models would need to be developed to more accurately predict 

their distribution and abundance using GLMs.  At this point, it would make sense if the video 

data were better at predicting their abundance.  Being a species that is associated with soft 

substrates, better predictors would need to be used to determine their preferences within the 

GLMs.  Currently, the video analysis is better at distinguishing between these subtle differences 

in the low-relief habitat. 

 

4.8 Stock Assessments 

 Although stock assessments were calculated for each species within each block, the 

predicted stock counts are limited by the accuracy of the GLMs.  In areas where the GLMs were 

not very effective, the stock assessments may be greater or less than the actual stock size, 

depending on whether the model tends to over-predict or under-predict the abundance of fish.  

As a preliminary study, the stocks of fish were calculated to show that as a possible use of these 

models; however, more robust models would be desired before using them to predict stock sizes.  

For example, the stock assessment of S. elongatus is probably far from the actual stock size 

because those models were not very accurate in their predictions. 

 Even with the limitations of the stock assessments produced in this study, the stock sizes 

do follow the general pattern expected with these species of fish.  S. flavidus had the greatest 

predicted stock size of 469,447 fish (+/- 100,955), followed by S. rosaceus with 295,003 fish (+/- 

65,139), and then S. elongatus with 37,452 (+/- 15,906).  The video observations supported this 

pattern as well.  Of these three fish, S. flavidus was observed the most, then S. rosaceus, and 

finally S. elongatus with the least amount of sightings.  In addition, a catch and release study 

done on the bank in 1994 ranked S. flavidus and S. rosaceus as the first and second most 

common species on the bank, respectively (Eldridge, 1994).      

           

5 CONCLUSION   

In conclusion, remote sensing data and landscape ecology analysis and modeling tools 

can be used to accurately predict the distributions of rock fish species.  If these models prove to 
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be consistent and accurate after further testing, this study could provide an efficient technique for 

managing fishery resources all over the world. 

In addition, with additional development of these methods, it may be possible to create a 

process that allows for stock assessments in areas where very limited biological data exists.  For 

example, if certain species of fish are found to be consistently and strongly associated with 

certain habitat characteristics derived from the multibeam and backscatter data, it could be 

possible to simply map an area and, with some knowledge of the species of fish that are found 

there, predict the abundance of those species.  Or they could be used to determine the distribution 

of their preferred habitats and potential stock size in areas already depleted by over fishing but 

candidates for MPA status.  These methods could prove to be an efficient and effective technique 

for deciding on the placement of marine protected areas and marine reserves.  

Computer technology, remote sensing, GIS, and statistical software are constantly 

advancing in the direction of creating new tools for the study of biodiversity.  It is important that 

these tools are utilized to develop efficient techniques for studying biodiversity, especially in the 

marine environment where access is limited.  The types of models that were used in this study 

have been utilized in the terrestrial realm for years by decision-makers and land-use planners to 

protect habitat for land-based species (Austin, 1998).  The oceans, however, have by enlarged 

not benefited from this type of objective and statistically rigorous landscape analysis.  With the 

amount of high-resolution bathymetric data that has been collected and that is being collected in 

the marine environment, it is very possible to implement the type of habitat modeling explored in 

this study in a number of different areas.  Therefore, it is important to continue fine-tuning 

methods that can be used to accurately predict the abundance and distribution of species in the 

marine realm. 
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APPENDIX  
 
Sebastes flavidus (Yellowtail Rockfish) 
 
AREA 1 

Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 1 to predict the probability of finding S. flavidus throughout the block (n = 
227). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 9 121 130 
Absent 72 24 96 
Total 82 145 227 

 

Summary of the predictor variables used in the GLM performed on Area 1 to predict the 
probability of finding S. flavidus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 19.65906 3.962127 4.962 6.99E-07 *** 
Rugosity -8.56848 3.44214 -2.489 0.0128 * 
Bathymetry 0.066406 0.007645 8.686 <2.00E-16 *** 
BS Slope Position -0.33039 0.136631 -2.418 0.0156 * 

 

Summary of the probability results from the GLM performed on Area 1 to predict the probability 
of finding S. flavidus throughout the block.    
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 1 
0.00-0.1 606969 0.61 3% 
0.11-0.2 215982 0.22 1% 
0.21-0.3 148302 0.15 1% 
0.31-0.4 267498 0.27 1% 
0.41-0.5 412056 0.41 2% 
0.51-0.6 607095 0.61 3% 
0.61-0.7 1839285 1.84 9% 
0.71-0.8 3348522 3.35 17% 
0.81-0.9 3771180 3.77 19% 
0.91-1.00 9045666 9.05 45% 
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Area 1 GLM results for Sebastes flavidus (yellowtail rockfish).  Warmer colors indicate a high 
predicted probability of S. flavidus occurrence, while cooler colors indicate low probabilities. 
Yellow dots signify locations where S. flavidus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
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AREA 2 
 
Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 2 to predict the probability of finding Sebastes flavidus throughout the block 
(n = 184) 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 6 48 54 
Absent 99 31 130 
Total 105 79 184 

 
 
Summary of the predictor variables used in the GLM performed on Area 2 to predict the 
probability of finding S. flavidus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 24.872 5.763 4.316 1.59E-05 *** 
Bathymetry 0.084 0.012 6.896 5.36E-12 *** 
BS Slope Position 0.003 0.001 2.115 0.0344 * 
Rugosity -15.345 5.223 -2.938 0.003 ** 

 

Summary of the probability results from the GLM performed on Area 2 to predict the probability 
of finding S. flavidus throughout the block.    
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 2 
0.0-0.1 4824504 4.82 25% 
0.11-0.2 4724046 4.72 25% 
0.21-0.3 1727802 1.73 9% 
0.31-0.4 985869 0.99 5% 
0.41-0.5 772425 0.77 4% 
0.51-0.6 661320 0.66 3% 
0.61-0.7 676143 0.68 4% 
0.71-0.8 960102 0.96 5% 
0.81-0.9 1773828 1.77 9% 
0.91-1.0 2048004 2.05 11% 
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Area 2 GLM results for Sebastes flavidus (yellowtail rockfish).  Warmer colors indicate a high 
predicted probability of S. flavidus occurrence, while cooler colors indicate low probabilities. 
Yellow dots signify locations where S. flavidus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
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AREA 4 
 
Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 4 to predict the probability of finding Sebastes flavidus throughout the block 
(n = 113). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 6 36 42 
Absent 45 26 71 
Total 51 62 113 

 
Summary of the probability results from the GLM performed on Area 4 to predict the probability 
of finding S. flavidus throughout the block.    
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -314.453 122.931 -2.558 0.011 * 
Bathymetry 0.055 0.009 5.850 4.92E-9 *** 
Rugosity 319.760 123.220 2.595 0.009 ** 
FS Slope Position -0.923 0.335 -2.780 0.005 ** 
BS Slope Position 0.619 0.205 3.014 0.003 ** 

  

Summary of the probability results from the GLM performed on Area 4 to predict the probability 
of finding S. flavidus throughout the block.        
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 4 
0.0-0.1 691218 0.691 3% 
0.11-0.2 3771918 3.772 19% 
0.21-0.3 2123586 2.124 11% 
0.31-0.4 710235 0.710 4% 
0.41-0.5 592497 0.592 3% 
0.51-0.6 654228 0.654 3% 
0.61-0.7 1739232 1.739 9% 
0.71-0.8 2209797 2.210 11% 
0.81-0.9 2042307 2.042 10% 
0.91-1.0 6109047 6.109 31% 
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Area 4 GLM results for Sebastes flavidus (yellowtail rockfish).  Warmer colors indicate a high 
predicted probability of S. flavidus occurrence, while cooler colors indicate low probabilities. 
Yellow dots signify locations where S. flavidus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
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AREA 5 
 
Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 5 to predict the probability of finding Sebastes flavidus throughout the block 
(n = 209).  

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 26 37 63 
Absent 121 25 146 
Total 147 62 209 

 
Summary of the probability results from the GLM performed on Area 5 to predict the probability 
of finding S. flavidus throughout the block.    
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 6.689 2.571 2.602 0.009 ** 
Rugosity -5.318 2.518 -2.112 0.035 * 
Bathymetry 0.054 0.010 0.010 2.88E-8 *** 
BS Slope Position 1.073 0.213 0.213 4.92E-7 *** 

 

Summary of the probability results from the GLM performed on Area 5 to predict the probability 
of finding S. flavidus throughout the block.     
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 5 
0.0-0.1 1451754 1.452 7% 
0.11-0.2 1365318 1.365 6% 
0.21-0.3 1512972 1.513 7% 
0.31-0.4 1517193 1.517 7% 
0.41-0.5 1887831 1.888 9% 
0.51-0.6 2397195 2.397 11% 
0.61-0.7 2390832 2.391 11% 
0.71-0.8 3133413 3.133 14% 
0.81-0.9 2349270 2.349 11% 
0.91-1.0 3632427 3.632 17% 
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Area 5 GLM results for Sebastes flavidus (yellowtail rockfish).  Warmer colors indicate a high 
predicted probability of S. flavidus occurrence, while cooler colors indicate low probabilities. 
Yellow dots signify locations where S. flavidus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
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Sebastes rosaceus (Rosy Rockfish) 

AREA 1 

Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 1 to predict the probability of finding S. rosaceus throughout the block (n = 
197).  

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 10 66 76 
Absent 90 31 121 
Total 100 97 197 

 
Summary of the predictor variables used in the GLM performed on Area 1 to predict the 
probability of finding S. rosaceus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 62.820 20.751 3.027 0.002 ** 
Rugosity -47.092 18.424 -2.556 0.011 * 
Bathymetry 0.096 0.036 2.659 0.008 ** 
BS Slope Position -1.307 0.350 -3.724 0.000 *** 
FS Slope Position 0.735 0.254 2.888 0.004 ** 

 
Summary of the probability results from the GLM performed on Area 1 to predict the probability 
of finding S. rosaceus throughout the block.    
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 1 
0.0-0.1 1458009 1.46 7% 
0.11-0.2 374184 0.37 2% 
0.21-0.3 479907 0.48 2% 
0.31-0.4 448587 0.45 2% 
0.41-0.5 568368 0.57 3% 
0.51-0.6 870084 0.87 4% 
0.61-0.7 1897929 1.90 9% 
0.71-0.8 2310093 2.31 11% 
0.81-0.9 2711250 2.71 13% 
0.91-1.0 9144153 9.14 45% 
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Area 1 GLM results for Sebastes rosaceus (rosy rockfish).  Warmer colors indicate a high 
predicted probability of S. rosaceus occurrence, while cooler colors indicate low probabilities.  
Pink dots signify locations where S. rosaceus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
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AREA 4 
 
Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 4 to predict the probability of finding Sebastes rosaceus throughout the block 
(n = 181). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 12 22 34 
Absent 123 24 147 
Total 135 46 181 

 
Summary of the probability results from the GLM performed on Area 4 to predict the probability 
of finding S. rosaceus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 10.067 3.092 3.255 0.001 ** 
Bathymetry 0.148 0.041 3.647 0.000 *** 
Slope 0.462 0.187 2.470 0.014 * 

 

Summary of the probability results from the GLM performed on Area 4 to predict the probability 
of finding S. rosaceus throughout the block.    
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 4 
0.0-0.1 6998454 6.998 35% 
0.11-0.2 440559 0.441 2% 
0.21-0.3 312030 0.312 2% 
0.31-0.4 365553 0.366 2% 
0.41-0.5 566046 0.566 3% 
0.51-0.6 855441 0.855 4% 
0.61-0.7 1259226 1.259 6% 
0.71-0.8 1556199 1.556 8% 
0.81-0.9 1950588 1.951 10% 
0.91-1.0 6370848 6.371 32% 
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Area 4 GLM results for Sebastes rosaceus (rosy rockfish).  Warmer colors indicate a high 
predicted probability of S. rosaceus occurrence, while cooler colors indicate low probabilities.  
Pink dots signify locations where S. rosaceus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
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AREA 5 
 
Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 5 to predict the probability of finding Sebastes rosaceus throughout the block 
(n = 220). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 20 54 74 
Absent 124 22 146 
Total 144 76 220 

 
Summary of the probability results from the GLM performed on Area 5 to predict the probability 
of finding S. rosaceus throughout the block.    
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -4.062 3.403 -1.194 0.233  
Aspect 0.006 0.002 3.035 0.002 ** 
Rugosity 9.082 3.472 2.615 0.009 ** 
Bathymetry 0.072 0.013 5.599 2.16E-8 *** 

 

Summary of the probability results from the GLM performed on Area 5 to predict the probability 
of finding S. rosaceus throughout the block.     
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 5 
0.0-0.1 2469951 2.470 11% 
0.11-0.2 1410840 1.411 7% 
0.21-0.3 1440540 1.441 7% 
0.31-0.4 1937934 1.938 9% 
0.41-0.5 1918836 1.919 9% 
0.51-0.6 2109465 2.109 10% 
0.61-0.7 2322387 2.322 11% 
0.71-0.8 2806065 2.806 13% 
0.81-0.9 3443193 3.443 16% 
0.91-1.0 1778985 1.779 8% 
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Area 5 GLM results for Sebastes rosaceus (rosy rockfish).  Warmer colors indicate a high 
predicted probability of S. rosaceus occurrence, while cooler colors indicate low probabilities.  
Pink dots signify locations where S. rosaceus were observed and the red dots indicate locations 
where no fish were present.  (Image resolution:  3m; coordinate System:  UTM 10N WGS 84; 
NOAA Chart 18640, soundings in fathoms; multibeam survey completed fall 2005.) 
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AREA 6 
 
Contingency table of the data used to determine the probability accuracy from the GLM 
performed in Area 5 to predict the probability of finding Sebastes rosaceus throughout the block 
(n = 119). 

# of Points where model indicates 
Point Type Low Probability High Probability Total 
Present 8 50 58 
Absent 59 2 61 
Total 67 52 119 

 
Summary of the probability results from the GLM performed on Area 6 to predict the probability 
of finding S. rosaceus throughout the block. 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) 20.439 4.061 5.032 4.85E-7 *** 
Substrate 4.769 2.242 2.128 0.033 * 
BS Slope Position -1.545 0.808 -1.910 0.050 * 
Bathymetry 0.210 0.043 4.871 1.11E-6 *** 

 

Summary of the probability results from the GLM performed on Area 6 to predict the probability 
of finding S. rosaceus throughout the block. 
Probability of Occurrence Area (m2) Area (km2) Percentage of Area 6 
0.0-0.1 12684537 12.685 63% 
0.11-0.2 545472 0.545 3% 
0.21-0.3 400365 0.400 2% 
0.31-0.4 282276 0.282 1% 
0.41-0.5 338265 0.338 2% 
0.51-0.6 549720 0.550 3% 
0.61-0.7 803691 0.804 4% 
0.71-0.8 1132542 1.133 6% 
0.81-0.9 1285353 1.285 6% 
0.91-1.0 1793304 1.793 9% 

 


