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ABSTRACT: Accurate efficient estimation of actual and potential species distribution is a critical
requirement for effective ecosystem-based management and marine protected area design. In this
study we tested the applicability of a terrestrial landscape modeling technique in a marine environ-
ment for predicting the distribution of ecologically and economically important groundfish, using
3 species of rockfish at Cordell Bank National Marine Sanctuary (CBNMS) as a model system. Auto-
classification of multibeam bathymetry along with georeferenced submersible video transect data of
the seafloor and demersal fishes were used to model the abundance and distribution of rockfish. Gen-
eralized linear models (GLMs) were created using habitat classification analyses of high-resolution
(3 m) digital elevation models combined with fish presence/absence observations. Model accuracy
was assessed using a reserved subset of the observation data. The resulting probability of occurrence
models generated at 3 m resolution for the entire 120 km? study area proved reliable in predicting the
distribution of all the species. The accuracies of the models for Sebastes rosaceus, S. flavidus and
S. elongatus were 96, 92 and 92 %, respectively. The probability of occurrence of S. flavidus and
S. rosaceus was highest in the high relief rocky areas and lowest in the low relief, soft sediment areas.
The model for S. elongatus had an opposite pattern, with the highest predicted probability of occur-
rence taking place in the low relief, soft sediment areas and a lower probability of occurrence in the
rocky areas. These results indicate that site-specific and species-specific algorithmic habitat classifi-
cation applied to high-resolution bathymetry data can be used to accurately extrapolate the results
from in situ video surveys of demersal fishes across broad areas of habitat.
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INTRODUCTION

Reliable, spatially explicit delineation of species/
habitat associations and their use in the accurate esti-
mation of species distribution (both actual and poten-
tial) is essential for the implementation of effective
ecosystem-based management strategies, particularly
the design and monitoring of protected areas (i.e. re-
serves) (MacMahon 1997, Scott et al. 2002, Leathwick
et al. 2008, Pittman et al. 2009). A variety of threats
to marine ecosystems, including pollution, resource
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extraction and climate change, have contributed to
significant decreases in distribution, abundance and
health of organisms (Jackson et al. 2005, Dunn &
Halpin 2009). In response, marine spatial planning
is being widely adopted as a more promising tool for
effective marine conservation, including the imple-
mentation of marine protected areas (MPAs). How-
ever, successful implementation of MPAs requires
accurate and detailed information on the habitat char-
acteristics of importance to the species of interest
(Pittman et al. 2007).
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Traditional methods of distributional estimates have
typically relied upon broad extrapolation from nar-
rowly constrained or sparse data sets, or very costly
intense sampling efforts carried out over broad areas
(Margules & Austin 1991, Li & Hilbert 2008). However,
because the selection of habitats by organisms is non-
random (Rhodes et al. 2005), habitat conditions impor-
tant to the occurrence of a species can be used to pre-
dict their distribution and aid in the development of
management plans (Fernandez et al. 2003).

In terrestrial environments, spatially explicit habitat
suitability modeling has emerged as an efficient tool
for generating accurate patterns and predictions of
species abundance and distribution (Austin et al. 1994,
Hirzel et al. 2002, Rotenberry et al. 2006, Kleinwachter
& Rickfelder 2007, Valavanis et al. 2008). The integra-
tion of recent advancements in GIS software (Hirzel et
al. 2002, Rotenberry et al. 2006), spatial modeling tools
(i.e. marine geospatial ecology tools, MGET), which
use multivariate statistical models to associate species’
occurrence with quantitative patterns in the landscape
(Roberts et al. 2010), and broad-scale, high-resolution
terrain mapping techniques now enable the creation of
species-specific habitat suitability models over broad
geographic ranges (Hirzel et al. 2002, Rotenberry et al.
2006, Valavanis et al. 2008). These models, e.g. gener-
alized linear models (GLMs) and generalized additive
models (GAMs), use information on species occur-
rence in relation to a number of environmental vari-
ables (e.g. elevation, slope, aspect, precipitation, tem-
perature) to predict species occurrence in areas where
no observational data on the presence or absence of
those species exists (Rotenberry et al. 2006).

More recently, the use of habitat modeling as a tech-
nique to estimate species distributions has been imple-
mented in the marine environment (i.e. Rubec et al.
1998, Lindholm et al. 2001, Nasby-Lucas et al. 2002,
Auster et al. 2003, Bryan & Metaxas 2007). However,
the difficulty of sampling submerged habitats at suffi-
cient scales and resolution has imposed limitations on
the applicability of habitat models, and relatively few
studies have analyzed the relationship between ben-
thic habitat variables and the distribution and abun-
dance of demersal fish species in deeper habitats
(>30m) (Anderson & Yoklavich 2007).

Along the west coast of North America, rockfish and
other groundfish are the basis for broad-scale fisheries
(Williams & Ralston 2002, Anderson & Yoklavich 2007).
However, because these species are slow growing,
long lived and require several years to reach reproduc-
tive maturity, they are highly vulnerable to overex-
ploitation. Indeed, several of these species were har-
vested at unsustainable levels for many years and
population sizes have been reduced to historic low
levels (Williams & Ralston 2002). Although there is a

need for data on the distribution, abundance and habi-
tat associations of the different species (Yoklavich et al.
1999, Williams & Ralston 2002), there are limitations in
the ability of several commonly employed field sam-
pling techniques (e.g. trawling, SCUBA) to generate
accurate estimates of distribution and abundance
either regionally or over the broad geographic range of
many rockfish species (Jagielo et al. 2003).

One method for acquiring visual observational data
with spatial information that has become a standard
method for quantifying rockfish is the use of a manned
submersible (Jagielo et al. 2003). Yoklavich et al.
(2007) used a submersible to conduct visual surveys of
demersal juvenile and adult cowcod Sebastes levis
over 8 major rocky banks in southern California and
found assessments of cowcod are feasible using non-
extractive visual methods to provide reasonable
estimates of density, total abundance and biomass.

Although spatially referenced visual methods have
become useful in quantifying the abundance of
groundfish species, extrapolating those observations to
areas where no visual data exist must be based upon
predictions of the character of unobserved habitats. As
a result, the ability to create predictions of species
occurrence from high resolution in situ visual surveys
could be greatly enhanced when integrated with
broad-scale seafloor landscape models derived from
high-resolution multibeam bathymetry and sidescan
sonar data. Combining broad-scale, high-resolution
habitat data with spatially restricted observational
data allows for multiscale habitat-based community
assessments. Recent advances in the acquisition and
processing of bathymetric and backscatter data now
enable the classification of seafloor habitats with spa-
tial resolutions on the order of a few meters to upwards
of hundreds of meters (Hughes Clarke et al. 1996,
Nasby-Lucas et al. 2002). Species-specific habitat
modeling based on remotely sensed seafloor geo-
morphology and texture data, as well as direct video
fish survey data, should prove to be an efficient tech-
nique for defining essential fish habitat.

The purpose of this study was to determine how well
spatial predictive modeling techniques traditionally
used in terrestrial systems, such as GLMs, can be used
to create species-specific habitat models that predict
the distribution of demersal fishes over broad areas.
We assumed that, because demersal species are asso-
ciated with specific seafloor habitat types in the marine
environment just as ground dwelling species are in ter-
restrial environments, it is likely that the methods used
to successfully predict species distribution in terrestrial
environments could be applied to marine systems.
Using Cordell Bank and 3 species of rockfish —yellow-
tail rockfish Sebastes flavidus, rosy rockfish S. rosa-
ceus, and greenstriped rockfish S. elongatus—as a
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model system, we created species-specific habitat suit- 123.44° W), with pinnacles coming to within 40 m of the
ability models using a combination of georeferenced water's surface and surrounding depths being greater
video data and habitat parameters derived from high- than 350 m (Fig. 1). The upwelling provided by the Cal-
resolution topographic maps of Cordell Bank. The ifornia Current makes Cordell Bank an area of high
expectation was that predicted patterns of species dis- species abundance, supporting large populations of
tribution would correlate with actual observed species many resident and migratory species. Rockfishes Se-
occurrence from video footage not used to parameter- bastes spp. are by far the most abundant resident fishes
ize the model. If successful, these types of models constituting 90 % of the fish observed on the bank. Al-
would be useful for helping to understand the relation- though the status of Cordell Bank as a National Marine
ships of species with their habitats and, in turn, could Sanctuary does not protect it from fishing, the bank's
provide a tool for managers to characterize essential remote location does appear to provide some refuge for
fish habitat, aiding in the implementation of marine rockfish species depleted elsewhere along the main-
spatial management and location of new MPAs. land, including boccacio S. paucipinis, yelloweye rock-

fish S. rubberimus, vermilion rockfish S. miniatus and

canary rockfish S. pinniger (Anderson et al. 2009).
METHODS Data acquisition and processing. Multibeam and
backscatter data were collected by the Seafloor Map-
Natural history. The study site for this project is ping Lab at California State University, Monterey Bay,
Cordell Bank, an 8 x 15 km granitic formation located aboard the RV ‘VenTresca' at Cordell Bank National
40 km west of Point Reyes, California (38.02°N, Marine Sanctuary, California, over a period of 8 d in
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Fig. 1. Digital elevation model of Cordell Bank in relation to Point Reyes, California with 25 m depth contours created from the Depart-
ment of Fish and Game 200 m statewide bathymetry. Depths are indicated with the shallower (high) white and the deeper (low) black
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September and October of 2005. A pole-mounted
Reson SeaBat 8101 multibeam sonar was used. The
multibeam sonar collects depth soundings at 1.5° inter-
vals across a 150° swath. Data were recorded using an
Isis Sonar data acquisition system (Triton Imaging
2005). Along with the sonar data, corrections for pitch,
roll, heave and heading were collected using the
Applanix Position and Orientation Systems for Marine
Vessels (POS MV) system with +0.02° accuracy. Vessel
position data were provided by a C&C Technologies C-
Nav 2050 GPS Precise Point Positioning receiver en-
abled for Real Time GIPSY (RTG) corrections yielding
horizontal and vertical accuracies of 0.15 m or better.

After acquisition, the multibeam data were imported
into CARIS HIPS software where they were corrected
for the effects of attitude, tide and sound velocity, and
all erroneous data soundings were removed using
standard hydrographic data cleaning procedures
(CARIS 2006). After cleaning, the data were exported
as XYZ (easting, northing, depth) data at regularly
spaced (3 m) intervals from CARIS and, once verified
that there were no spikes or erroneous soundings re-
maining, the data were exported as a digital elevation
model (DEM) in Environmental Systems Research
Institute (ESRI) grid format for GIS analysis. A DEM is
a raster data set that consists of elevation values at
regularly spaced intervals.

A comprehensive biological survey of Cordell Bank
was conducted using the submersible vessel ‘Delta’
over 12 d in September and October of 2002. Sixty strip
transects (2 m wide and 15 min in duration) were run
across a variety of habitats ranging from 34 to 350 m in
depth. During transects, the submersible remained
within 1 to 2 m off the seafloor and traveled at speeds
between 0.4 and 0.9 knots. All transects were video-
taped with an externally mounted video camera, and
the in situ observer's counts and descriptions were
recorded and later transcribed in the laboratory. All
fish within 2 m of the submersible were identified and
counted. These presence/absence data were then con-
verted into ESRI shapefile format for ArcGIS analysis.

Habitat analysis. GIS landscape analyses were per-
formed on the DEM to delineate those habitats that
many species of rockfish are known to prefer, includ-
ing rocky areas with high relief or areas of large boul-
ders and stones. Within ArcGIS 9 (ESRI 1999 to 2006),
various tools were used to derive 4 habitat descriptor
rasters from the DEM that would be used in the models
to delineate these habitat types and predict the occur-
rence of rockfish on Cordell Bank: these were depth,
slope, aspect, vector ruggedness and topographic posi-
tion index (TPI) rasters (Fig. 2). The correlation of the
habitat variables was explored before choosing vari-
ables for the models so that 2 correlated variables were
not used in the same model.

Depth information for Cordell Bank was provided by
the DEM. Depth is believed to be the single most im-
portant predictor of rockfish distribution (Williams &
Ralston 2002, Anderson & Yoklavich 2007). Many spe-
cies of rockfish are associated with specific depth
ranges and most species increase in abundance with in-
creasing depth up to 250 m (Williams & Ralston 2002).

Slope and aspect rasters were derived from the bathy-
metric DEM using the ArcGIS Spatial Analyst extension.
Slope values were expected to serve as good predictors
of fish presence or absence because areas of high slope
are believed to be associated with consistently greater
densities of fish than less sloping areas (McClatchie et al.
1997). Aspect, or the compass direction that a slope
faces, was chosen as a potential predictor of rockfish
abundance because the aspect of the slope relative to
prevailing ocean current direction may influence food
availability, recruitment and habitat suitability.

Vector ruggedness measure (VRM) grids were cre-
ated using the Terrain Tools toolbox for ArcGIS (Sap-
pington et al. 2007). Vector ruggedness is a measure of
the terrain ruggedness using vector analysis where the
3-dimensional orientation of the grid cells are taken
into account, allowing for variation in slope and aspect
(Hobson 1972). Flat smooth areas have VRM values
near 0, while the higher values (up to 1) are associated
with areas of higher relief or bumpiness. Vector
ruggedness is an appropriate parameter for predicting
the distribution of rockfish because it captures the
topographic complexity of the habitat. Topographic
complexity is an important habitat characteristic that
serves many ecological roles (i.e. often correlated with
species richness and provides refuge from predators
and physical stress) (Pittman et al. 2007, Zawada &
Brock 2009) that could be of importance to the distrib-
ution of rockfish species. Previous studies have shown
that there is a strong relationship between topographic
complexity and reef fish abundance (Friedlander &
Parrish 1998, Walker et al. 2009) because greater com-
plexity is correlated with an increase in substratum
and the availability of refuge (MacArthur & Levins
1964, Pittman et al. 2007).

From the VRM map, a 'distance to rock’ raster was
derived. The study area was classified into 'rock’ and
'soft sediment’ by choosing a cutoff value in the VRM
of 0.001 and reclassifying the map. This cutoff value
was chosen through trial and error and found to be the
optimal value because it adequately separated the
areas into the different substrate types. After classify-
ing the map into rock and soft sediment, the raster
was converted to polygons. From the polygons, the
Euclidean distance tool was used to extrapolate out a
distance-to-rock value for the entire extents of the
study area. Distance to rock was expected to be a good
predictor of the distribution of rockfish because, al-
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Fig. 2. Habitat metrics derived from the multibeam bathymetry DEM at Cordell Bank. Depth, slope, VRM and broad scale TPI are
shown. These habitat parameters were used in GLM predictions of rockfish habitat suitability (probability of occurrence).
DEM: digital elevation model; TPI: topographic position index; VRM: vector ruggedness measure

though they may not be found directly above a rock
feature, they are usually found in close proximity
(lampietro et al. 2005).

The final habitat metric derived was topographic
position index (TPI), which indicates the position of a
given point relative to the overall surrounding land-
scape (Lundblad et al. 2006). TPI can be used to delin-
eate landforms such as peaks, ridges, cliffs, slopes, flat
plains and valleys, and is calculated by comparing the
elevation of each cell in a DEM to that of its surround-
ings. Because the neighborhood size of the surround-
ings used for the elevation comparison can be ad-
justed, TPI can be calculated at various scales. Thus,
an analysis size can be chosen that will identify fea-
tures of any desired size, ranging from fine-scale fea-
tures such as the tops of boulders and pinnacles, to
entire reefs, to regional-scale features such as sea-
mounts. Likewise, TPI can be used to locate fissures
and cracks in rock, sand channels and submarine can-

yons (Lundblad et al. 2006). The TPI analysis employed
in this study was done using the algorithm of Weiss
(2001), which uses an annulus (‘donut’) shaped neigh-
borhood. TPI products were created using the bathy-
metric position index (BPI) grid creation and classifica-
tion tools included in the BTM to create grids with
scales of analysis at 30, 60, 120 and 240 m (orad), with
an arbitrary 5 cell (15 m) annulus thickness (orad-—
irad). A variety of scales were chosen to determine
whether rockfish are more closely associated with
broad, fine or medium scale features (Fig. 2).

GLMs. The three species of rockfish chosen for this
analysis, Sebastes flavidus, S. elongatus and S. rosace-
us, were selected based on the types of habitat in
which they are commonly found and because they are
commercially and economically important. S. flavidus
and S. rosaceus are commonly found in high-relief
rocky habitats while S. elongatus is found in low-relief
muddy habitats (Love et al. 2002). The presence and
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absence observation points for each species of interest
were derived from the video data. The spatially ex-
plicit observations of the species of interest along tran-
sects were used as the presence points and the points
along transects, where the species was not seen were
used as the absence points.

The absence points were further subsampled to
reduce the number of potential ‘false absences,’ using
a 2-step approach similar to the one outlined by Engler
et al. (2004). Using this approach, an ecological niche
factor analysis (ENFA) model (Hirzel et al. 2002) is cre-
ated from presence only data and then that model is
used to determine the locations of absence data. To
create the ENFA model, the BioMapper software ap-
plication was used along with the habitat maps and
the species presence data to create species-specific
habitat suitability maps. Rather than creating pseudo-
absences as described by Engler et al. (2004), the ob-
servational survey of Cordell Bank was extensive
enough to allow us to subsample the absence data
from the transects by selecting only those absences
found in the unsuitable habitat identified by the ENFA
model. Using this approach reduces the risk of includ-
ing false absences in the model, which can bias the
results (Hirzel et al. 2002).

The presence and absence points were separated
into training and evaluation data sets. Seventy percent
of the presence and absence points were randomly
selected for use in the training of the models while the
remaining 30 % were set aside as the ‘observed’ data
set for evaluating the accuracy of model predictions.
The absence data were also derived from the biologi-
cal observation data. Points along transects where the
species of interest was not observed were treated as
absence points. The absence data were also divided-
into training (70 %) and evaluation (30 %) data sets.

The presence and absence point location shapefiles
were used together with the DEM and derived habitat
parameter rasters in ArcGIS to create predictive mod-
els using the Marine Geospatial Ecology Toolbox
(MGET) (Roberts et al. 2010). MGET integrates ArcGIS
with the R statistical package (R Development Core
Team 2007) to produce multivariate habitat prediction
rasters. Within this toolbox, the GLM tool was used to
produce predictive grids for each species of rockfish
based on their associations with the habitat on which
they were found. GLMs are believed to be good tools
for analyzing ecological relationships because they do
not force the data into unnatural scales. GLMs do not
require the data to be linear or have constant variance
and they are capable of using data from a number of
different probability distributions (Guisan et al. 2002).

The GLM within MGET samples the values of each
of the predictor rasters (e.g. slope, rugosity, depth) at
each presence and absence point location and then

uses those data to create prediction rasters that display
the probability of species occurrence for unsampled
locations using a binomial logistic regression model
(Guisan et al. 2002). A stepwise Akaike's information
criterion (AIC) analysis selects the coefficients to deter-
mine the best fit model (Posada & Buckley 2004).

The GLM analyses were performed using the fish
presence/absence and habitat raster data for each
species separately, with the same general methods
applied to each species. Each time the MGET GLM
tool was used, the appropriate fish presence/absence
point locations were specified along with the habitat
parameter rasters of interest. These rasters included
the bathymetric DEM and derived parameters such as
aspect, slope, VRM and TPI at the broad and fine scale
levels. Because results from preliminary models sug-
gested that VRM and slope were correlated, these
variables were not used together in any of the models.
Separate models containing either VRM or slope were
tested to determine which model was a more effective
predictor of fish distribution in each case and the best
model was then chosen for analysis. The GLM tool pro-
duces a predictive map of species occurrence based on
the model and input raster layers, which is converted
to ArcGlIS format for visualization and further analysis.
Once completed, each of the models was tested for
their predictive capabilities by comparing the pre-
dicted occurrence of fish to the observed presence and
absence points (the 30 % of the observational data set
aside for model evaluation and not used in the creation
of the model).

Model validation. To test model accuracy, Cohen's
Kappa values were calculated for each of the species-
specific models to determine the agreement between
the predicted and observed presence and absence
values. Cohen's Kappa is a statistical test that mea-
sures the agreement between categorical terms. It is
similar to percent agreement but is more robust in that
it takes into account agreement occurring by chance
(Cohen 1960). A binary predicted presence/absence
raster was derived from the probability of occurrence
raster for each species by setting a threshold probabil-
ity of 0.6. This value was chosen because it is within
the range of 0.5 to 0.7, which is commonly used in pub-
lished GLM studies (Austin 1998, Hirzel & Guisan
2002). The cell values in the binary predicted pres-
ence/absence raster for each species were thus ‘0’
wherever the GLM predicted the probability of occur-
rence to be less than 0.6, and ‘1" in locations where that
threshold was exceeded. The observed presence/
absence locations for each species that were reserved
and not used in model fitting were compared with the
respective predicted presence/absence raster cell val-
ues, and the agreement between the 2 was quantified
using Cohen's Kappa analysis.
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Spatial autocorrelation. To further test the strength
of these models, the data were tested for spatial auto-
correlation (SA), which is a common property of eco-
logical variables where observations at specific geo-
graphic distances apart are more similar to each other
or less similar than would be expected by random
chance (Legendre 1993). It is most likely to occur when
observations are closely spaced rather than being
more widely separated in space and often results in an
increase in Type I errors or false positives (Segurado et
al. 2006), thereby reducing the explanatory and pre-
dictive value of species distribution models (Segurado
et al. 2006). Thus, if SA is present in the response vari-
able, the explanatory variables have exaggerated sig-
nificance and the coefficients of these variables are
inflated.

A basic assumption of GLMs is independence in the
residual errors (McCullagh & Nelder 1989, Wintle &
Bardos 2006). However, if SA is significant and not
taken into account when developing species distribu-
tion models based on GLMs, that basic assumption is
not met. Therefore, the predictions could be biased
and the predictive power of the model diminished
(Wintle & Bardos 2006). Furthermore, when creating
predictive models with spatially autocorrelated ex-
planatory variables, the significance attributed to more
spatially autocorrelated variables may be exaggerated.
The bias towards the more autocorrelated variables
has the potential to leave out less autocorrelated vari-
ables, which could be more important to the presence
of the species of interest than are the autocorrelated
variables selected for the model (Segurado et al. 2006).

The R statistical package was used to generate spa-
tial correlograms using Moran's I coefficients to test
whether the GLMs used in this study were influenced
by SA. In particular, the spatial locations of the fish
presence/absence points used to create the model (the
response variables) were tested against the habitat pa-
rameters for the occurrence of SA. Moran's I measures
how similar samples of a given variable are over vary-
ing spatial distances and usually ranges from -1.0 to
1.0, where negative values represent negative spatial
autocorrelation and positive values represent positive
spatial autocorrelation. A Moran's I value of ‘0" indi-
cates no spatial autocorrelation. After creating the cor-
relograms, an ANOVA was used to determine whether
the observed spatial autocorrelation was significant.

Comparison between GLMs and autologistic re-
gression (ALR). If significant spatial autocorrelation
was found, an ALR model was run on the response
variables to determine whether there was a significant
change in the explanatory power of the model coeffi-
cients (Legendre 1993, Dormann 2007). ALR takes into
account the spatial variation of the data by including
autocovariance as an additional explanatory variable

in the model (Dormann 2007). The ALR was run in R
using autocovariate regression in the ‘spdep’ package.
The results of the ALR were then compared with those
of the GLM to determine whether the explanatory
power of the models was lost.

RESULTS
Model accuracies

As expected, the GLM for Sebastes flavidus pre-
dicted the highest probability of occurrence in rocky
high-relief habitats and lower probability in low-relief,
soft sediment habitats (Fig. 3).

Comparison of the evaluation data set to model pre-
dictions resulted in 69 % agreement for presence and
97 % for absence locations. The overall accuracy of the
model was 92 % with a statistically significant Cohen's
Kappa (KHAT) value of 0.714 (p < 0.000). A KHAT
value between 0.61 and 0.80 signifies a ‘substantial’
agreement (Landis & Koch 1977). Stepwise AIC analy-
sis found depth, depth?, distance to rock, and 30 m TPI
to be significant factors in predicting the distribution of
Sebastes flavidus (Table 1). The equation for the model
based on the coefficients is:

GLM =6.864 + [(1.2496_1) x depth] +
[(4.187e™*) x (depth)?] - [(1.510e2) x distance to rock] +
[(6.391e™Y) x TPI 30 m]

Again, as expected, the models for Sebastes rosaceus
found the highest probabilities of occurrence in the
rocky high-relief habitats whereas the flat, soft sedi-
ment habitats had low values (Fig. 4). The prediction
accuracies for S. rosaceus were even higher than those
for S. flavidus, with presence and absence predicted
correctly 99 and 96 % of the time, respectively. The
overall accuracy of the model was 96 % with a statis-
tically significant KHAT value of 0.886 (p < 0.000). The
KHAT value of 0.886 signifies ‘almost perfect' agree-
ment between the evaluation data set and the predic-
tions (Landis & Koch 1977). The stepwise AIC analysis
for S. rosaceus found depthz, slopez, VRM and distance
to rock to be the most significant factors in predicting
the distribution of this species (Table 2). The equation
for the model based on the coefficients is:

GLM = 4.365 — [(4.939¢%) x (depth)?] —
[(2.321e%) x (slope)?] - [(163.4) x VRM] +
[(5.503e73) x distance to rock]

Unlike the GLMs for Sebastes flavidus and S. rosa-
ceus, the GLM for S. elongatus predicted the highest
probability of occurrence in the deep and flat soft sedi-
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ment areas (Fig. 5). Presence was pre-
dicted correctly 60 % of the time and ab-
sence was predicted correctly 97 % of
the time. The overall accuracy of the
model was 92 % with a statistically sig-
nificant KHAT value of 0.621 (p < 0.000).
A KHAT value between 0.61 and 0.80
signifies a ‘substantial’ agreement (Lan-
dis & Koch 1977). The stepwise AIC
analysis for this GLM found depth, VRM
and 240 m TPI to be significant factors
for predicting the distribution of S. elon-
gatus (Table 3). The equation for the
model based on the coefficients is:

GLM = —23.830 — [(2.872e™") x depth] -
[(6.658e7%) x (depth)?] — (4416 x VRM) +

[(-3.632e7%) x distance to rock] - [(6.175e73) x TPI240]

Table 1. Comparison of the coefficients and significance (p-values) of each of the

habitat parameters used in the GLM and autologistic regression (ALR) models

for Sebastes flavidus. Asterisks (*) indicate the p-value is significant based on an
o of 0.05. na: not applicable

Parameter Model coefficient p-value
GLM ALR GLM ALR

Intercept 6.864 2.281 <0.000* 0.370
Depth 1.249¢7! 1.993e72 <0.000* 0.710
Depth? 4.187e™* -2.620e™* 0.008* 0.336
Distance to rock -1.510e72 -2.769e73 <0.000*  0.094
TPI 30 m 6.391e7! 5.072e7! <0.000* 0.081
Autocovariance na 21.312 na <0.000*

Spatial autocorrelation

Spatial autocorrelation was significant for all vari-
ables except slope and aspect in the models for Sebas-
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Fig. 4. Sebastes rosaceus. GLM results for rosy rockfish. Reddish (bluish) colors indicate highest (lowest) predicted probability
of occurrence for S. rosaceus. Red dots signify locations where S. rosaceus were observed, while black dots indicate areas where
they were absent. Grid reference system in WGS 1984, UTM zone 10N

Table 2. Comparison of the coefficients and significance (p-values) of each of the

habitat parameters used in the GLM and autologistic regression (ALR) models

for Sebastes rosaceus. Asterisks (*) indicate the p-value is significant based
on an o of 0.05. na: not applicable

Parameter Model coefficient p-value
GLM ALR GLM ALR
Intercept 4.365 5.357 <0.000* <0.000*
Depth? —-4.939e -7.391e™* <0.000*  0.002*
Slope? -2.321e73 1.321e72 0.010*  0.775
VRM 163.400 -26.060 0.579 0.044*
Distance to rock -5.503e73 -7.386e73 0.002* <0.000*
Autocovariance na 14.970 na <0.000*

tes rosaceus and S. elongatus, respectively. The spatial
correlograms for the residuals of the variables for all 3
species showed a pattern of positive autocorrelation of
all the variables at finer scales with a decrease in

Moran's I values up to approximately
500 m, beyond which the Moran's I co-
efficients fluctuate around zero be-
tween negative and positive autocorre-
lation as the scale increases. These
results suggest that the predictor vari-
ables have a patchy distribution at the
finer spatial scales and a more random
distribution as the spatial scale in-
creases. The same pattern was seen
among the predictor variables for all 3
species (Fig. 6).

After determining that there was sig-
nificant spatial autocorrelation, ALR

was run on the response variables to determine
whether accounting for autocovariance reduced the
effect of spatial autocorrelation and, therefore, im-
proved the accuracy of the models. The results from
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Table 3. Comparison of the coefficients and significance (p-values) of each of the

habitat parameters used in the GLM and autologistic regression (ALR) models-

for Sebastes elongatus. Asterisks (*) indicate the p-value is significant based on
an o of 0.05. na: not applicable

Parameter Model coefficient p-value
GLM ALR GLM ALR
Intercept -23.830 -23.810 0.014* 0.014*
Depth -2.872¢e7! —-2.870e7! 0.053* 0.054*
Depth? —-6.658e™4 -6.649¢* 0.245 0.257
VRM -4416 -4419 0.020*  0.021*
Distance to rock -3.632e73 -3.638e73 0.344 0.345
TPI 240 m -6.175e7! -6.167e™ 0.038*  0.040*
Autocovariance na 4.278e7? na 0.985

the ALR showed that, although spatial autocorrelation
was reduced at the finer scales, the reduction was
not substantial and it did not completely eliminate the
spatial autocorrelation for Sebastes flavidus and S.

rosaceus. For S. elongatus, the level of
spatial autocorrelation was very similar
whether autocovariance was included
as a term in the model or not (Fig. 6).

Comparison of GLM and ALR models

The GLM and ALR models differed
for Sebastes flavidus and S. rosaceus
but remained similar for S. elongatus.
For S. flavidus, all the variables found
to be significant in the GLM became
insignificant when autocovariance was

included as a term in the ALR model. Distance to rock
and the 30 m TPI were nearly significant, but only the
autocovariance term was found to be a significant pre-
dictor in the ALR (Table 1).
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Fig. 6. Spatial correlograms for the presence of (a) Sebastes
flavidus, (b) S. rosaceus and (c) S. elongatus. The black
squares are from the correlograms created from the GLM
and the gray diamonds are from the spatial correlograms
created from the autologistic regression (ALR). These spatial
correlograms show that the ALR decreases the spatial auto-
correlation slightly but does not eliminate it completely for
any of the species

The difference between the GLM and ALR was less
significant for Sebastes rosaceus. All variables found to
be significant in the GLM remained significant in the
ALR except for slope?, which became insignificant. In
addition, the autocovariance term became significant
in the ALR (Table 2).

In contrast to the other 2 species, the GLM and ALR
for Sebastes elongatus remained very similar. All the
coefficients remained similar and the significance of
the variables changed by only a negligible amount
(Table 3).

DISCUSSION
Evaluation of modeling methods

The application of GLMs to high-resolution seafloor
terrain data proved to be a highly efficient and effec-
tive method for creating accurate, species-specific
habitat maps for those rockfish species at Cordell
Bank. Previous studies have shown that rockfish prefer
sloping terrain (McClatchie et al. 1997) and it is clear
from these results that Cordell Bank offers a substan-
tial amount of potential habitat with the majority of the
bank classified as sloping.

In addition, the VRM analysis gives information on
the amount of available rocky substrate. Because slope
and VRM are correlated, the stronger predictor of fish
presence/absence was used as a predictor in the mod-
els. As shown in other studies (MacArthur & Levins
1964, Friedlander & Parrish 1998, Dunn & Halpin 2009,
Walker et al. 2009), the complexity of the habitat
(VRM) was found to be an important predictor of oc-
currence for both Sebastes rosaceus and S. elongatus.

In all the models, either depth? or a combination of
depth and depth? were important variables for ex-
plaining the distribution of the 3 species of rockfish used
in this study. This result is consistent with other studies in
which both the abundance and number of rockfish spe-
cies increase with depth between 151 and 250 m and
then decrease below this range (Williams & Ralston
2002). The polynomial function captured the nonlinear
relationship between rockfish and depth and helped in
accurately predicting their distribution. Although
depth proved to be an important predictor, when used
alone it does not fully explain the distribution of fish.

The TPI analyses showed the difference in habitat
types when analyzed at differing scales. The fine scale
analyses had fewer habitat classes than did the broad
scale and the habitat patches were much smaller.
When included in the models, Sebastes flavidus was
closely associated with the fine-scale habitats while S.
elongatus was more closely associated with the broad-
scale habitats. Depending on the species of fish, either
broad or fine scale TPI might better explain and pre-
dict a species distribution. Regardless of scale, the TPI
analysis does capture features that are important to the
distribution of species, which is similar to results from
other studies (Weiss 2001, Lundblad et al. 2006).

Distance to rock was a significant predictor for the
occurrence of Sebastes flavidus and S. rosaceus found
in the high-relief rocky habitats. Although these spe-
cies may not be found directly on top of the rocky habi-
tat, they are found in close proximity to it. This result
agrees with those found in other studies where prox-
imity to peaks was found to be a good predictor of
rockfish occurrence (Iampietro et al. 2005).
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GLMs based on seafloor geomorphology were effec-
tive at predicting the probability of occurrence for all
the species used in this study. However, the model for
Sebastes elongatus classified all the flat, deep sedi-
ment areas as high probability of occurrence. This
result could cause an over-estimation of suitable habi-
tat for this species. Given the bathymetry-derived vari-
ables used (depth, VRM, slope, TPI and distance to
rock,) the models were able to discriminate between
different rocky habitats more effectively than between
the subtle differences in the muddy habitat prefer-
ences of S. elongatus. The acoustic backscatter (i.e.
sidescan sonar) collected with the multibeam bathy-
metry data can be used in the discrimination of fin-
scale seafloor texture such as sediment types, and its
inclusion in the analysis would probably yield a much
better and more detailed landscape model of S. elon-
gatus probabilities of occurrence. Unfortunately, back-
scatter data could not be included in the GLMs used
here because there were too many unique values (n =
256) in the raw, unclassified, side scan mosaics, caus-
ing the models to crash due to limitations in computer
processing power. One possible solution would be to
use classified backscatter intensity as described by
Cochrane & Lafferty (2002) and Intelmann & Cochrane
(2006), thereby reducing the number of substrate
texture classes to a more manageable range.

Another potential flaw with the Sebastes elongatus
model could be the small number of observations
recorded for this species. Although not applied here,
different methods, such as ordination, may be more
suitable in situations where very few presence points
exist. This method is based on reciprocal averaging of
species and site scores and is better at dealing with
data that have many absences or zeroes (Guisan &
Zimmermann 2000).

Spatial autocorrelation

The analysis of spatial autocorrelation revealed that all
variables were spatially autocorrelated, especially at the
finer spatial scales. All of the variables followed the same
general pattern with positive spatial autocorrelation at
the finer scales and then fluctuations between positive
and negative spatial autocorrelation. This pattern shows
that these 3 species of rockfish and the variables they are
associated with have a patchy distribution up to about
500 m and then a more random distribution at the larger
spatial scales, which shows that rockfish are associated
with certain types of habitats and are not found ran-
domly throughout Cordell Bank.

Although, in the past, spatial autocorrelation in eco-
logical data was believed to inflate Type I errors and
increase bias in statistical analyses, new studies are

showing that it does not necessarily cause bias (Diniz-
Filho et al. 2003). However, spatial autocorrelation
analysis should still be conducted as it can serve as an
important method for elucidating the mechanisms
affecting the spatial structure of populations (Diniz-
Filho et al. 2003).

To account for spatial autocorrelation we ran ALR
models, which include autocovariance as a variable
and, therefore, account for the spatial autocorrelation
in the data. In some cases, the ALR caused some of the
variables found important to the distribution of fish in
the GLMSs to become insignificant. The comparison
between the models (i.e. AIC) showed that the ALR
models were more robust; however, because we could
not predict the autocovariance over the entire study
area, we could not create a predictive distribution grid
and were unable to compare the predictive power of
the models using an evaluation data set. In future stud-
ies, more exploration into the use of kriging to create a
map of spatial autocorrelation over the extent of the
study area would allow for the creation of predictive
distribution maps that include spatial autocorrelation
as a variable (Augustin et al. 1996, Miller & Franklin
2006). Even though Dormann (2007) showed that re-
gression often undervalues the effect of environmental
variables and, as a result, gives biased estimates when
compared with nonspatial logistic regression models,
such as GLMs, it is still important to explore the effect
that spatial autocorrelation has on the predictive
power of the data set.

Limitations of approach

A potential problem with the models used in this
study is that they rely only on indirect predictor vari-
ables (e.g. slope, VRM, topographic position, distance
to rock), which have no direct physiological relevance
for species' performance. Relying solely on indirect
variables tends to limit the geographical range across
which a model can be applied successfully. Therefore,
these models could be improved if resource variables
(e.g. nutrients, food) and other direct variables (e.g.
temperature, pH) were incorporated into the GLMs
rather than simply relying on benthic habitat features
(Guisan & Zimmermann 2000). Therefore, the models
used in this study predict potential habitat. On the
other hand, it is difficult and time consuming, if not
impossible, to collect data for most direct variables,
particularly at the spatial scales supported by multi-
beam sonar data, and some may be difficult to incorpo-
rate into these types of models.

Another important variable that these models do not
take into account is fishing pressure, a factor that can
limit the geographical extent of a given model's applic-
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ability. A model that is developed in a protected area
where little fishing effort occurs could adequately
define suitable habitat and accurately predict the
presence/absence of fish. However, if the same model
were transferred to a location of higher fishing pres-
sure, the model may predict suitable habitat well but
not actual presence.

This study only explored the use of GLMs to deter-
mine the probability of occurrence of the rockfish spe-
cies. Another type of model that could potentially pro-
vide more robust predictions is the GAM. GAMs are
similar to GLMs in that they can be used with data that
are nonlinear and have nonconstant variance (Yee &
Mitchell 1991, Guisan et al. 2002). GLMs do not always
have the ability to approximate the true regression sur-
face, especially if the true curve is asymmetrical.

Finally, these models are based on a ‘snapshot’ of
habitat use by these fish species. More robust models
in the future will include movement data and provide
more understanding of the scale at which species are
associated with their habitat, as well as their habitat
use over longer time periods and how often they move
between different habitat types. Acoustic tracking of
fish will enable more robust modeling approaches to
predicting the distribution of fish.

The combination of these limitations can make it dif-
ficult to transfer these spatially explicit models to other
locations to predict the presence/absence of fish. How-
ever, lampietro et al. (2008) successfully used one of
the models from Cordell Bank to accurately predict the
occurrence of Sebastes flavidus on the shale beds in
Monterey, California. That study showed that at least
one of the species responded to the same types of
habitat features in a different location.

Implications for management

Despite their limitations, these types of species-
specific landscape models show great promise in their
ability to accurately predict the distribution of demer-
sal groundfish species. As a result, they should prove
useful in the fields of conservation biology and fish-
eries management, particularly when applied to the
design and selection of MPAs and the identification of
essential fish habitat (EFH) (Pittman et al. 2004, 2007).
Because habitat distribution and preference play a
large role in the structuring of fish assemblages, inden-
tifying suitable habitat for the species of interest is cru-
cial to the successful design of MPAs (Love et al. 2006).
Moreover, these models provide an efficient method
for determining the benthic habitat characteristics of
importance to different species and could be used to
define the distribution of suitable potential habits for
the restoration of targeted species in depleted areas.

CONCLUSIONS

Previously, limitations in the resolution and coverage
of bathymetric maps have made it difficult to develop
correlations between species and their habitats based
on this information (Nasby-Lucas et al. 2002). In the
present study, using landscape ecology modeling
techniques applied to high-resolution, acoustic remote
sensing data we have demonstrated that the results
from detailed but narrowly confined visual surveys can
be accurately and efficiently extrapolated across broad
areas of the seafloor. In addition to the management of
marine fishes, these types of models could also be
applied to a number of marine organisms. Now, with
the rapidly growing volume of high-resolution bathy-
metric data being collected along continental margins,
there is a need for spatially referenced species obser-
vations and movement data within the coastal areas for
the broad implementation of these types of species-
specific habitat models. Moreover, repeat mapping
will create the time series needed to assess habitat
change and temporal variability in quality and prefer-
ence, both critical to MPA and fisheries performance.
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