Harmful algal bloom (HAB) toxins have been shown to mediate the strength of consumer-prey interactions, and thus ecosystem patterns and processes, by altering the foraging behavior of principal predators in coastal marine systems. In a series of companion studies
examining the role HABs play in structuring marine vertebrate/invertebrate predator-prey relationships, we compared the foraging behavior and diet of key marine mammal and avian predators with prey abundance and seasonal/spatial variation of paralytic shellfish
poisoning toxins (PSPT) in selected invertebrate prey species. Results of these foraging studies suggest that some high-level marine predators are able to detect and avoid consumption of lethal concentrations of HAB toxins by altering their foraging strategies, as
demonstrated by site avoidance, prey switching, and selective tissue rejection behaviors. Consequently, the ability of prey species to retain toxins may deter or exclude these ecologically important predators from areas affected by HABs, potentially altering ecosystem
structure and function. The ecological implication of this shifting of predation pressure away from preferred prey has yet to be determined.

Shorebirds and seasonally toxicgprey|in California

Our general approach was to document and correlate changes in the foraging behavior of fi ging avian with changes
(spatial and temporal) in harmful algal bloom (HAB) related toxicity of their invertebrate prey in two different habitat and community types.
Habitats included: 1) Rocky shores where Black Oy H IS i) forage primarily on sea mussels (Mytilus
californianus), and, 2) Exposed sandy beaches where a diversity of shorebirds forage on extremely abundant sand crabs ",
(Emerita analoga). Each of these prey species are known to accumulate PSPT during HAB events (F1). These two systems )
provided ideal study sites for determining the ical role of pk ins in benthic col ities. Pairing each sandy site with - _}
a rocky site separated by only a few hundred meters not only minimized field effort, but enabled comparisons of prey toxicity

and predator behavior in different habitat types exposed to very similar bloom conditions.

" Observations of foraging birds were made every two weeks during the lowest tides of the month at pre-selected
L rocky and sandy beach sites from April through October. Foraging data was collected using a "continuous focal
i sample" method. Type and duration of the bird's activities were recorded to the nearest second, as well as habitat
used, and weather and surf conditions. Major activity categories included: searching, prey handling, inactive periods
of foraging due to wave interruption, resting, interacting with other birds (especially kleptoparasitism), and out-of-
view. All prey captured during a focal sample was identified and recorded. Rejection and partial consumption of prey
was also noted. PSPT levels in tissue samples (sea mussels and sand crabs) were analyzed using the standard
mouse bioassay.

Sea Oftérs”andschronically toxi¢ psey in Southeast Alaska

Prior to 1991, Sea otters in southeast Alaska were found only along the outer coast, where they preyed primarily upon populations of
Saxidomus giganteus (butter clams) with no history of paralytic shellfish poisoning (PSPT) toxicity. The Inside Passage, however, is well

" known for large populations of butter clams containing chronically high levels of PSPT. We tested the general hypothesis that PSPT
distribution regulated sea otter foraging by determining: 1) whether or not the expandlng southeast Alaskan sea otter population occupied
Inside Passage sites where butter clams are but contain ifi levels of PSPT, and 2) if so, whether the sea

_ otters either shifted their diet away from their primary butter clams prey to alternate non-toxic species, or are continuing to eat butter clams,
while di ing the most toxic body parts.

Study areas for comparison were selected based on documented patterns of butter clams toxicity and recent sea otter range expansion. Prior to
selecting specific observation sites, each area was subdivided and thoroughly surveyed by small boat. Specific sampling stations within sites were
selected where sea otters were observed to be actively feeding. Because previous work with captive sea otters suggests that 149 ug PSPT 100g™* in
butter clams is a threshold level for sea otters, sites or prey were not considered toxic unless average levels were above this value.

F1. Synchronous rise and fall
of PSPT concentrations (ug
STX eq -100g%) in sand
crabs and sea mussels at the
study sites. Data points
represent  single  values
resultant of standard mouse
bioassay analyses.

Within each study area we sought to assess and quantify sea otter diet and foraging behavior, as well as prey availability, composition, abundance, and

PSPT toxicity. Methods included direct observation of sea otter diet composition, feeding behavior (including dive times, surface intervals, feeding rate

and foraging success), SCUBA diver sampling of prey shells and discarded tissues (particularly the large siphon of butter clams), as well as live prey

abundance. Wlth these data we determined the threshold concentrations of PSPT avoided by free-ranging sea otters, and how this avoidance
to in the prey status.

Birds switch to alternate prey at high prey toxicity

Butter clams were selected as the best
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dlscardlng tissues of any other captured prey species, nor from butter clams at any sites where the
P prey toxicity was below 200 pgSTX eq 100g .
Statistically, there was a significantly higher frequency of
sea otters discarding butter clams at sites where this
species’ toxicity was > 200 pgSTX eq - 100g (t-test, df = 5,
t = 6.49, p = 0.001), but sea otters were never observed
even capturing butter clams in areas where their toxicity
was > 500 pgSTX eq - 100g™.

shorebirds on sandy beaches all began
rejecting a high percentage of their preferred
prey (mussels and sand crabs resp

at PSPT concentrations > 150 pg STX eq
+100gt. The shift in behavior occurred
between 125 pg STX eq -100g?, the highest
prey PSPT concentration at which there was
no observed predator response, and 150 to
200 pg STX eq -100g?, the lowest values at )

toxic sites. The majority of butter clam the sandy habitat study sites.

mortality by sea otters was greatest at
sites of “intermediate toxicity” where sea
otters were actively testing and
discarding tissues. Although sea otters
were never observed to capture butter
clams at the highly toxic sites (>500
HgSTX eq - 100g 1), the presence of a
very few butter clam shells in the recent

the same time period.

Sand crabs (Emerita analog
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areas (T1).

TL Saxidomus giganteus. Abundance (ind. - 0.25m ), size (mm) and
biomass (g - 0.25m 2) were all significantly lower at sea ofter occupied sites
where butter clam paralytic shellfish poisoning (PSP) toxicity levels were low
(<500 ug STX eq - 100 g™ tissue weight) than at otter sites where butter clam
PSP toxicity levels were high (500 g STX eq - 100 g ). Data are mean +
SD; N = number of sites

[Full results can be found in MEPS 271:233-243, 2004]

Scatter plots of shell record data from individual
sea otter feeding sites showing the relationship
between butter clam toxicity and a) the percentage
of butter clam shells found among all collected
bivalve shells that had been opened by sea otters,
and b) the percentage of otter-cracked shells
among all recently predated butter clam shells from
all sources of mortality collected at each site.

eq - 100g?) at the study sites. Vertical line at 150 pg
STX eq - 100g™ marks the threshold prey PSPT
concentration above at which predator foraging
behaviors changed. <: samples where only egg
masses were consumed.

[Full results can be found in MEPS 293:303-309, 2005]
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place well after the feeding event. Under these circumstances, it is less likely that HAB toxins woul
& 500 g STX eq -100g for sea otters, and 150-200 pg STX eq -100g for shorebirds) are similar to the concentrati
(226 pg STX eq +100g?) (Kvitek et al. 1991), and captive fish (135 pg STX eq -100g?) (
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ivalve prey that promoted changes in feeding behavior during comrolled experiments with free-ranging sea gulls (445 pg STX eq -100g!) (Kvitek 1991b), captive sea otters
(Kvitek 1991a).
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is likely not the case for piscivorous species such as pinnepeds, whales and sea birds, the marine
n the stomachs of their prey would not be released into the predators system until digestion takes

e po ey 's soft organ tlssues to contact wrth the inside of their mouth pnor to swallowmg Thus, if these
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cards and diet shifting were observed reported in these companion studies (200 pg STX eq -100g*




